Abschnitt Name Beschreibung
Datei List of topics to select for your Student's Presentation on Bayesian Networks. Selecting completely free your own topic of interest is encouraged!

Plan for the students' presentations in WiSe2024/25: 

You can select a topic from the list of available topics/materials or you can search for new materials and/or you can prepare your own example.

The dates are tentative for the presentation in the class. 

We can decide to shift them all by 1-2 weeks later. Everyone should have one presentation in the class.

First, you do the  presentation (20 min) and then we model (15-20 min) together with everyone in the class the model you have presented.

The oral exams for everyone will be probably on 21/22.01.2025, after we get an official booking from the dean office.

Prof. Galia Weidl
___
If you prefer to prepare your own application: How can this presentation be arranged?
If you chose a topic (e.g. a small real application) where you need to prepare the (e.g. found from internet) data for learning of the probabilities of your model, so you can split the work into two:

- one student can work on the structure of the model and collect all information necessary to build the structure ( graph of the network)
- second student will then learn from data the probabilities for the created structure.

In the class I will show you with one automotive example (maneuver recognition for cars) how this can be done. And then you can do it in a similar way.

Where to find data?
My PhD students will show you (in the comming classes, im November/December) some web-pages, where you can find data to build your application.

Datei Process on the Student Research Project: BN for Road Congestions
Textseite Mentorat (Consultation/Sprechstunden)



Open source Data sets for Traffic Flow Analysis Datei Introduction & Data Sets with Road congestions

You can find here, in section 2. Data analysis, a number of open source data, which you can use to parameterize a Bayesian network, which you have modeled similar as you have read in the papers (see next section below) OR 

extend the existing modelsmaybe you have a new interpretation of the modeling, you can also combine different models in a new way or add new missing elements.

Datei Papers on Road Congestions

This is only a small selection of papers on road congestions.

You can search for other papers on the same topic, which discuss:

the use of Bayesian Networks for Root Cause Analysis of Traffic Congestions, Disturbances in traffic flow, traffic jam, and similar key words.

I suggest to read the paper road crash.pdf

There are also data from Australia on crash, which can be used to build a Bayesian Network and to learn  the probabilities from the data.

Datei Study Work: Shaocheng Liu: Student Research Project on Diagnosis and Prediction of road congestion (2023-03-10)

Diagnosis and Prediction of road congestion using Bayesian networks


Datei Process of the Study for learning from data

Shaocheng Liu

Datei csv-data & data organization

python code for data organization

Datei Student Work_Xing_final Congestion, data, processing, BN model (2023-03-10)
Datei Student Presentation on congestion, data, processing, learning BN model, performance evaluation : Le Chenadec, Aubin

Name,  presentation date: , e-mail:


Datei Introduction to (Limited Memory) Influence Diagrams

HUGIN --> Help --> Help Topics --> 

  • Introduction to (Limited Memory) Influence Diagrams

The Apple Tree Example - with Decision Node and Cost/Utility Node
The Oil Wildcatter Example

  • How to Build a (Limited Memory) Influence Diagram
see also eBook, section 6.2.2, Example 6.5, Fig,  6.1, Fig 6.2

This topic will be presented by 
Name,  presentation date: , e-mail:

WinterTerm 2024/25: Students Presentations: Select some materials, that you would like to prepare for 30 min presentation in the seminar (Wednesday: 09:45 - 11:15) Textseite Select your own application to present

  • In part 1 of the presentation you can talk about an application of Bayesian Networks of your own choice
    • search in google/Internet about a topic or papers, e.g. you can find many applications of Bayesian networks in

Diagnostics (medical or technical) or any application in Risk Assessment, which  often use Bayesian Networks for modeling.

  • Im Part 2 of your presentation you can show one example, that you have modeled and you can find more materials in

Hugin --> Help --> Help Topics (Search) --> examples

  • Risk modeling with Bayesian Networks:

https://www.bayesserver.com/docs/modeling/risk/


Datei Differential Diagnosis of COVID-19 - using Bayesian Networks

https://library.bayesia.com/articles/#!bayesialab-knowledge-hub/2021-03-10-tech-talk-bayesia-diagnostic-app

You can install the app via the following links:

chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://library.bayesia.com/resources/Storage/bayesialab-knowledge-hub/webinars-seminars-examples/2021-03-10-COVID-Diagnostics/TechTalk_SEICov.pdf

chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://library.bayesia.com/resources/Storage/bayesialab-knowledge-hub/webinars-seminars-examples/2020-03-26-COVID-19-Diagnostics/2020-03-26-Differential-Diagnosis-COVID-19.pdf


Datei E-Book: Bayesian Networks & BayesiaLab — A Practical Introduction for Researchers
Datei Your own choice of application. This PDF-file describes a medical application: Differential Diagnosis of Diseases

You can select some of the listed materials, or you can develop one model, as we  discussed on 2022-12-08 and later.

1) Topic of own interest, where you apply Bayesian Networks to model an application under uncertainties - if the application is too big, then you can split it in two parts: a) 30 min student presentation in the class; b) 20 min presentation at the exam

2) Medicine: medical diagnostics - there are many applications in medicine. 

Some very good explanations of medical applications are presented at these two webinars. There is also a PDF file to use for your presentation.

Webinar 1) Differential Diagnosis of Diseases: https://library.bayesia.com/articles/#!bayesialab-knowledge-hub/differential-diagnosis-of-diseases

Webinar 2) Differential Diagnosis of Covid-19: https://library.bayesia.com/articles/#!bayesialab-knowledge-hub/differential-diagnosis-of-covid-19

Explains how to model COVID 19 diagnostics with app for a smart phone.


Datei Applications of object-oriented Bayesian networks for condition monitoring, root cause analysis and decision support on operation of complex continuous processes

Diagnostic Applications: Process Industry: Applications of object-oriented Bayesian networks for condition monitoring, root cause analysis and decision support on operation of complex continuous processes

https://www.researchgate.net/publication/223839034_Applications_of_object-oriented_Bayesian_networks_for_condition_monitoring_root_cause_analysis_and_decision_support_on_operation_of_complex_continuous_processes


Datei Bayesian Networks for early and accurate Maneuver Recognition in Highway Traffic (Do not use for student's presentations. I used this in the lectures. We will use some of the model fragments for learning))

If you are interested in papers, using image processing for autonomous driving,

I recommend to search on internet for publications with the following key words

"uwe franke bayesian networks and machine learning autonomous driving"

If you want, you can try to get this paper from our TH-AB library

Making Bertha Drive—An Autonomous Journey on a Historic Route

Shannon Feng - presentation on 2023-06-15 2 x 20min (see her presentation below --> Available material ...)

Datei Choosing when To Interact With Learner
Available Material for Student presentation in general; on Congestions or during Covid19 and after Datei List of topics to select for your Student's Presentation on Bayesian Networks. Selecting completely free your own topic of interest is encouraged!

You can select a topic from the list of available topics/materials or you can search for new materials and you can prepare your own example.

See also section 2024-05-15: Bayesian Network for Analysis and Prediction of Traffic Congestion Using the Accident Data; Student's presentation: Kranthi Talluri. You can analyse another data set and Kranthi can help you.

Datei congestion-Covid ((congestion materials from 2023-06-15 , originaly prepared and presented by ShannonFeng)
Datei Reference paper

Reference paper

2024-10-23: Introduction: Artificial intelligence in applications. Modeling, Machine Learning and Data Classifier Performance. Install HUGIN 9.5 Student License Datei HUGIN 9.5 LICENSE for course "Artificial intelligence in applications. Modeling, Machine Learning and Data Classifier Performance"

For Students in both courses 

Course 7525: "Cognitive and object-oriented modeling under uncertainties as aspects of artificial intelligence in practical applications"

Course 7540: "Artificial intelligence in applications. Modeling, Machine Learning and Data Classifier Performance"

Please unzip the attached HUGIN LICENSE-9.5 and use the same path of the LICENSE for the installation.

To install the software on your computer: use the HUGIN 9.5 Download Links (see below):

----------------------------------
Please find the license file in attachment. Downloads links for the installation packages are here:

https://www.hugin.com/download-links/

-----------------------------------#-------------------------------------------------

# HUGIN license file

#

Product: Hugin Researcher

Version: 9.5

#

User: student license

Organization: THAB winter term 2024/2025

#

LicenseExpires: 20250331

SupportExpires: 20250331

#

Features: GUI API

#

Key: wPMf8-RENdO-uGOQ6-QKcGj-btuyJ-AhiiB-IRo72-45Ush

-----------------------------------#-------------------------------------------------

Your HUGIN 9.5 license file is attached. It is required to install and run the software.

HUGIN 9.5 (64-bit)

------------------

Windows:

https://download.hugin.com/pub/Licenses/9.5/HuginDist95(x64).msi

Mac:

https://download.hugin.com/pub/Licenses/9.5/Hugin_Dist_9.5-x64.dmg

https://download.hugin.com/pub/Licenses/9.5/Hugin_Dist_9.5-arm.dmg

Linux:

https://download.hugin.com/pub/Licenses/9.5/HUGIN_DIST_64.linux7.tar.bz2

https://download.hugin.com/pub/Licenses/9.5/HUGIN_DIST_64.ubuntu-18.04.tar.bz2

https://download.hugin.com/pub/Licenses/9.5/HUGIN_DIST_64.ubuntu-20.04.tar.bz2

https://download.hugin.com/pub/Licenses/9.5/HUGIN_DIST_64.ubuntu-22.04.tar.bz2

HUGIN 9.5 (32-bit)

------------------Windows:

https://download.hugin.com/pub/Licenses/9.5/HuginDist95.msi

Linux (no GUI):

https://download.hugin.com/pub/Licenses/9.5/HUGIN_DIST.linux7.tar.bz2


2024-10-23: Introduction. Machine Learning - Lecture 1 by Dr. Jamal Raiyn Datei 2024-10-23: Machine Learning. Introduction - Lecture 1
Datei 2024-12-11: Machine Learning - Lectures & Excercises by Dr. Jamal Raiyn. Instructions: How to install WEKA on your computer

2024-12-18: Machine Learning - Lectures & Excercises by Dr. Jamal Raiyn

Please follow the instructions on how to install WEKA on your computer, i.e.

Click the Link 'Lecture II_Part I_WEKA_Install_ 22-06-2023.pptx', in order to show/download the file.

Datei Machine Learning Schemes - all Materials with examples 11/2024

Please, un-zip the folder - to extract all materials for this lecture and excercises.

Textseite Data Mining and the WEKA toolkit: Videos introducing how to use WEKA

 Short Introduction Videos (5-10 min) for self-study

WEKA - open source software tool for Data Mining, i.e. using data to make predictions

Time to learn and exploire: 5 weeks, 3-5 hours/week

2024-12-11 & 2024-12-18 (exercise/WEKA): Machine Learning Schemes, Training Datasets, WEKA Datei WEKA installation
Datei Lecture 2: Machine Learning Schemes, Training with Datasets, WEKA: Script 2024-04-03
Datei Lecture III_Practical Machine Learning Schemes
Datei Video - KnowledgeFlow
Datei Video - WEKA explorer
Datei Machine learning presentation from 2024-12-11 (Dr. Jamal Raiyn)
2024-11-20 Data & preprocessing for the models in e.g. Jupiter, python; Machine Learning Datei Download the presentation materials of Mofeed Chaar on Data preprocessing for your model
Textseite You can ask questions on data preprocessing to Mofeed Chaar - by e-mail

email Mofeed Chaar: e01283@th-ab.de

2024-11-27: Data & preprocessing for the models in e.g. Jupiter, python; Machine Learning; Analysing Classifier Performance Datei Diagnosis and Prediction of road congestion using Bayesian networks
Kranthi Talluri, 2024-12-04

Datei 2024-12-04, Kranthi Talluri Presentation
2024-11-13 & 2024-11-20: Bayesian Networks for Decision Making in Automotive Applications Datei Lecture ( 2023-11-13, 11-20, 11-27...) Bayesian Networks for Cognitive & Object-orriented Modelling (Decision Making) in Automotive Applications

2024-05-08: We discussed  slides 1 - 12 on the lecture.

2024-05-22: We continue with the lecture and do some excercises:

- Modeling of Sensor Uncertainties

- Modeling of hypotheses for manaeuver recognition in traffic

I have produced an online video from slides 30 - 66. It was published on 2022-12-08:

Continuation of the lectures and modelling of OOBN will follow on 2024-05-29. 

At the excercises we will practice with modeling of various aspects as discussed in the lectures.

Textseite Decision Making for automotive applications: Detection of Lane Change Maneuvers

In this lectures we discuss real applications from the Automobil Industry.

On 2024-05-08 we start with the applications of Object-Oriented_Bayesian_Networks_for_Detection_of_Lane_Change_Maneuvers.

This will include:

1) Problem formulation. Knowledge-based modeling represented by cognitive hypotheses. Discussion.

2) Object-orriented Bayes Nets: definition and use.

3) MODELING AND RECOGNITION OF DRIVING MANEUVERS BY THE USE OF OOBNS

   - Modeling of Sensor Data

   - Modeling of the Driving Behavior During a Lane Change Maneuver

   - Define: What is feature? Calculation of the Feature Vector

   - Define: What is hypothesis? Lane Marking Crossing Hypothesis

   - Modeling of Lane Change Maneuvers

   -  Discuss the results & Conclusions

The corresponding publications are added below as PDFs and as a Link, leading to relevant Publications on "Maneuvers Recognition".

Bei Research Gate (https://www.researchgate.net/)  you can create your own Profile and thus get access to various publications.


Datei Object-Oriented Bayesian Networks for Detection of Lane Change Maneuvers (short conference paper)

Object-Oriented Bayesian Networks for Detection of Lane Change Maneuvers (short conference paper)

Datei Object-Oriented Bayesian Networks for Detection of Lane Change Maneuvers (long journal paper)

https://www.researchgate.net/publication/249012939_Object-Oriented_Bayesian_Networks_for_Detection_of_Lane_Change_Maneuvers

Object-Oriented Bayesian Networks for Detection of Lane Change Maneuvers (long journal paper)

You can find more Details about this work here:

https://publikationen.uni-tuebingen.de/xmlui/handle/10900/49869

2024-12-04: Bayesian Network for Analysis and Prediction of Traffic Congestion Using the Accident Data; Student's presentation: Kranthi Talluri Datei Bayesian Network for Analysis and Prediction of Traffic Congestion Using the Accident Data

This topic "Bayesian Network for Analysis and Prediction of Traffic Congestion Using the Accident Data" has been also presented by a PhD Student Kranthi Talluri at the 10th international conference on Vehicle Technology and Intelligent Transport Systems (VEHITS 2024):

https://www.insticc.org/node/technicalprogram/vehits/2024/

The zip file above contains all relevant materials, data, preprocessing for modeling and the final BN model.

If you are interested, you can wokr with this data to prepare your own presentation. Alternatively you can use one of the open source data sets. Kranthi will be happy to help you with the preparatioon of data and BN model .

2024-06-06: Available material for Student's Presentation: Object Oriented Bayesian Networks and Applications Datei Example of OOBN: Accident (see attached zip file)
Datei 2024-06-06: Available material for Student's Presentation: Object Oriented Bayesian Networks and Applications

The original presentation was given on 

2023-11-20 Student's Presentation: Object Oriented Bayesian Networks and Application (Accident Cars) by Johannes Krausert

You can use the materials in this section to prepare your own presentation.
2024-05-29 & 2024-06-12 & 2024-06-26 & 2024-07-02: Data to Learn Datei sensor model OOBN
Datei Data for Learning (Data sets for learning, 5% values are missing on the cases)
Datei Learning simple BN. BN Model Analysis. Joint Probability Distribution

1) Learned from the data (asia.dat, and from angina.dat, attached to the Lecture - two models: angina.net and ChestClinic_gw.oobn

Try to learn it in a self study, similar as we did by the excercises. Follow the instructions in the Tutorial

http://download.hugin.com/webdocs/manuals/8.9/htmlhelp/pages/Tutorials/Structure_EM_Adaptation_Learning/EM_LearningTutorial.html

2) Use the Functionality "Joint Probability Distribution (JPD)" for the learned models, angina.net and ChestClinic_gw.oobn.

JPD is useful to identify the most probable configurations over a set of nodes when their joint is too large to be represented in main memory.

or if the joint cannot be computed.

3) Just for your information: Remark on Junction Tree and Cliques (see attachement below)

Datei Bayesian Network Models to compare after you learn the model from data

The attached models are build from expertise. Compare them with the BN models you have learned from the data, where 5% of values were missing.

Datei Data to learn the hypotheses: angina, asia, LE, occgrid
Datei Maneuver Recognition OOBN with LE fragments (classes & objects)
2024-06-12: Lecture: How to read the paper on idioms and chapter 6 of the eBook? Continuation from previous lecture on Bayesian Networks for Decision Making in Automotive Applications Textseite Video (in German) 2021-12-09 Decision Support by Bayesian Networks. How to read the paper on idioms and chapter 6 ?

Fig. 6.12 Choosing the right idiom (Neil et al. 2000)

Stau (Congestion)

Cause-consequence idiom (Was sind die Ursachen von Staus in der Stadt?)

Was wären mögliche Datenquellen, die Staus Melden? Welche Datenquellen gibt es im Internet, die Staus melden?

Daraus brauchen wir: Reconciling different views

Daraus können wir einen App für die Bürger entwerfen mit zwei Ziele:

- Informieren wo gibt es Staus in der Stadt

- Wie können Staus vermieden werden?




Textseite Video Lecture 2022-12-08 (in English) as Continuation from 2022-11-17: Bayesian Networks for Decision Making in Automotive Applications

 The first 10 min explain how to construct BNs, based on BN fragments (idioms) as discussed in the last student's Presentation, in the paper  (Neil et al. 2000) and in chapter 6 of the eBook: Kjærulff, U. B., & Madsen, A. L. (2012). Bayesian networks and influence diagrams : A guide to construction and analysi

2022-12-08 Building Large Scale Bayesian Networks (BNs). Object-orriented BNs OOBN Applications Datei Building large-scale Bayesian networks. Identifying reusable patterns as idioms.

     (We discuss the general principles in this lecture - as orrientation how to build your own application model.)

Datei Object-orriented Bayesian Networks (OOBNs)
Datei Excercise: OOBN car, etc.
Available material for Student's presentation: Environment Risk Assessment Textseite 2023-05-25: Student presentation

Semijon Mujan on 2023-05-25

- Influence Diagram

- BN Application


Datei Presentation: 1) BAYESIAN NETWORKS FOR ENVIRONMENT: ASSESSING WILDFIRE CONSEQUENCESAL RISK ASSESSMENT; 2) Influence Diagrams with examples
Datei Presentation + BN model
Available Material for presentation:# Data- Set, -Analysis, Machine Learning, Classification of Iris Flower (in Jupiter and by Bayesian Networks) Datei 2023-11-27. Classification of Iris Flower (Example in Jupiter and with Bayesian Networks)
2023-11-27 & 2023-12-11 Student' presentation on Influence Diagrams (as an extention of Bayesian Networks) with Examples Datei 2023-11-27 Influence Diagrams & Example: Apple Tree Harvest ROI: Presentation by Anna Aulbach
Datei Chapter 4.2 Decision Making Under Uncertainty (search example)

Look at chapter 4.2. Decision Making Under Uncertainty

Some help on how to define the Conditional Probability Tables (CPT) is provided, when  you search for:

Example 4.5 (Oil Wildcatter (Raiffa 1968)).

Example 4.7 (Oil Wildcatter Strategy).


Datei Bayesian Networks for Environmental Risk Assessment. Limited Memory Influence Diagrams
2023-12-04 Student presentation. Data analyisis by linear regression Datei Here is the entire process on data, preprocessing and BN models learning and Classifier Performance Analysis
Available Material for Student Presentation on Learning from Data and Naive Bayes Classificator Datei Naive Bayes Classifier - learning from data, without preliminary structure

Naive Bayes Classifier - learning from data, without preliminary structure

Jorge Emiliano Turner Escalante 2023-12-04

Turner Escalante, Jorge Emiliano <s230359@th-ab.de>


Available Materials for Students' presentations on Medical Diagnostics & Learning from Data Textseite 2023-05-11: Student presentation on Medical diagnostics

Sebastian Nesse, Hannes Weber

2023-05-11

Datei 2023-05-11 Students' presentations on Medical Diagnostics & Learning from Data
In English: Notes for the preparation of the exam on 19.01. & 22.01. 2024 Datei In English: Note on Hypothesis (Cause) und Features (Effects)

Note on Hypothesis (Cause) und Features (Effects):

A conclusion/decision is based on the Cause – Effect Relation.

The Hypothesis is the diagnosis (i.e., the possible cause of a problem).

How do we find that there is a problem? – Based on the symptoms of this problem, the Problem has measurable (or observable) consequences/effects.

Therefore, we need for the decision/conclusion some features (German: Merkmale), i.e., measurements, and/or observations, which appear as consequences/effects of the Problems (causes).

Thus, we ask ourselves (e.g., for the Burglary-Modell):

What did we observe/measure?

  • Was an Alarm issued/sounding?
  • Did Watson call due to the alarm?
  • Did the Radio report a new message on earthquake?

Based on the observed/measure features we conclude/decide on the causes of a certain problem (issued alarm): Burglary or Earthquake. This means, that we meet the decision on what was the possible cause (diagnosis) of a problem, based on the evidence (observations/ measurements).

 

The HUGIN software tool is using the developed BN model to evaluate the hypotheses based on the concrete observations (evidences) of the features.

Therefore, for the Burglary-Modell: 

The Hypotheses are the possible causes of the problems:  Burglary or Earthquake,

and the features are the observed effects (i.e., consequences or symptoms) of the problem and its evidences: Alarm, Watson Call, Radio-Message.

--------------------------------------------------------

Note:
       * The Hypotheses are generated from the Features. In other words: from the Features are contructed the Hypothesen.

       * The hypotheses are evaluated, based on the Evidence (=measured Features) and this allows to make the decision.

       The Hypotheses are used in two different types of decision tasks:

  1. Diagnosis:

           For Diagnostics: die decision finds what Hypothesis has the highest probability, based on the observations/measurements (evidence). An example of Diagnostics task is the angina.oobn Bayes Network.

      2. Prognosis:  

Different Hypotheses are combined in order to build the prognosis um eine Prognosis, e.g. for the Recognition of maneuvers, based on observed features.

In the example " Recognition of maneuvers": The decision (=Maneuver Recognition) has several states: DONTCARE, OBJCUTIN, OBJCUTOUT, LANEFOLLOW, OBJFOLLOW, EGOOCUTIN, EGOCUTOUT. 
These states are computed based on the evidence (= observed features).
For example, the Lateral Evidence is a Hypothesis, which is build from the features (lateral velocity and laterale distance (offset).
The features are measured and set/entered as evidence in the Hypothesis.
A measured value (e.g. speed) is influenced by the really measured Variable (velocity) und by the uncertainty/inacuracy of measurement/Noise. 

    The decision finds what combination of Hypotheses (with the corresponding features) - in what state - has the highest probability. The ranking of states according to their probabilities allows to set priority on different states of the decision. 

Datei Examples of BN to practice for your presentation// Einige Beispiele (Bayes Netze) zum Üben

To download the BN examples (click on the icon).

I have collected here some examples of BN to help your preparation for the exam. You can select one of these examples or you can also present your own example (or another known example).

During the exam - you can explain the relevant exam questions based on your selected BN. 

Sucessfull Preparations for the exam! 


  • //  (In German: Einige Bayes Netzwerke zu verschiedene Entscheidungsfindung Beispiele.

    Sie können ein Bayes Netz aus den eingefügten Beispiele wählen oder ein eigenen (oder ein bekannten)  Beispiel verwenden.

  • Bei der Prüfung können Sie die Prüfungsfragen anhand eines Beispiels erläutern.

  •  Viel Erfolg bei der Vorbereitung!


We can discuss all possible question about the exam at our last lecture+excercise  on 12 Januar.

If needed, we can also arrange an aditional meeting. We talk on January 12th. about suitable times.


(In German): Prüfung - Hinweise für die Vorbereitung für die Prüfung am 19.01. & 22.01. 2024 Datei In German: Bemerkung über Hypothese (Ursache/Cause) und Merkmale (Wirkung/Effect)

Bemerkung über Hypothese (Ursache/Cause) und Merkmale (Wirkung/Effect):

Eine Entscheidungsfindung basiert auf der Ursache – Wirkung Beziehung (= Cause – Effect Relation)

Die Hypothese ist die Diagnose (d.h. die mögliche Ursachen eines Problems).

Wie entdecken wir das es ein Problem gibt? – Anhand der Symptome dieses Problems, d.h. das Problem hat messbare (bzw. beobachtbare) Auswirkungen.

Deshalb braucht man für die Entscheidung die Merkmale, d.h. Messungen oder Beobachtungen, die als Folge des Problems (Ursache) erscheinen.

Also, wir fragen uns (z.B. bei dem Burglary-Modell):

Was hat man beobachtet?

  • Hat sich ein Alarm ausgelöst?
  • Hat Watson angerufen deswegen?
  • Hat das Radio neue Nachrichten zur Lage (=Erdbeben) berichtet?

Anhand der Merkmale schließen wir zurück auf die Ursache eines Problems (Alarm Auslösung): Einbruch oder Erdbeben, d.h. wir treffen die Entscheidung über was war die mögliche Ursache (=Diagnose). Dabei werden die Hypothesen ausgewertet anhand der konkrete Beobachtungen (Evidenzen) der Merkmalen.

Deshalb für das Burglary-Modell: 

Die Hypothesen sind die Mögliche Ursachen des Problems:  Einbruch oder Erdbeben,

und die Merkmale sind die beobachtbare Auswirkungen (oder Folgen oder Symptome) des Problems: Alarm, Watson Anruf, Radio-Nachricht

---



Textseite In German: Erklärung Video zur Entscheidungsfindung durch Hypothesen aus Merkmale

         Erklärung:
       * Die Hypothesen werden aus den Merkmalen generiert. Oder anders gesagt: aus den Merkmalen entstehen die Hypothesen.

       * Basierend auf den Evidenz (=gemessene Merkmalle) werden die Hypothesen ausgewertet und somit findet man die Entscheidung.

       Die Hypothesen werden in zwei unterschiedliche Typen von Entscheidungsfindung-Aufgaben verwendet:

  1. Diagnose:

           Bei Diagnostik: die Entscheidung findet welche Hypothese die größte Wahrscheinlichkeit hat, basierend auf die Beobachtungen/Messungen (=Evidenzen). Ein Diagnostik Beispiel ist angina.oobn Bayes Netz.

      2. Prognose:  

Verschiedene Hypothesen werden kombiniert um eine Prognose zu bilden wie z.B. bei der Erkennung von Manöver anhand von beobachteten Merkmale.
In dem Beispiel mit Erkennung von Manöver: die Zustände der Entscheidung (=Manövererkennung) sind DONTCARE, OBJCUTIN, OBJCUTOUT, LANEFOLLOW, OBJFOLLOW, EGOOCUTIN, EGOCUTOUT. Diese werden anhand der beobachteten Merkmale (= Evidenzen) berechnet.
Beispielsweise, die Laterale Evidenz ist eine Hypothese, welche aus den Merkmalen (laterale Geschwindigkeit und laterale Abstand (offset) gebildet wird.
Die Merkmale werden gemessen und als Evidenzen in der Hypothese eingetragen.
Ein gemessener Wert (z.B. Geschwindigkeit) wird beeinflusst von der tatsächlich gemessene Variable (Geschwindigkeit) und von der Fehler (=Unsicherheit wegen Messrauschen/Noise) bei der Messung. 

    Die Entscheidung findet welche Kombination von Hypothesen (mit den entsprechenden Merkmale) - für welche Zustand  - die größte Wahrscheinlichkeit hat und diese höchste Wahrscheinlichkeit ergibt die Entscheidung.