BAYESIAN NETWORKS FOR ENVIRONMENTAL RISK ASSESSMENT: **ASSESSING WILDFIRE CONSEQUENCES**

Semijon Mujan

25. Mai 2023

ENVIRONMENTAL RISK ASSESSMENT

- short: ERA
- systematic process for identifying and evaluating the potential impact of a proposed activity, product, or substance on the environment
- Steps:
 - I. Problem identification
 - 2. Exposure estimation
 - 3. Effect estimation
 - 4. Risk assessment
 - 5. Risk management and communication

CASE STUDY: ASSESSING WILDFIRE CONSEQUENCES

- **1. Identification of the problem**: Wildfires are a significant environmental risk
- 2. Exposure estimation: Bayesian networks: probability of various fire events and their potential impacts on buildings
- **3. Impact assessment**: various factors that can affect the impact of fire on buildings
- **4. Risk assessment**: estimate of expected building damage for different fire types

DISCRETE FUNCTION NODE

- Table of discrete function → marginal distribution
 - can be a function of the values of the parents
 - is specified by using an expression
- Parent nodes can be:
 - Boolean
 - Numbered
 - Interval
 - Continuous

- hazard: characterized by the resulting burnt area and fire intensity
- fire intensity: rate of energy or heat release
- wildfire severity expressed by the resulting burnt area

Fire Intensity						
μ=173, σ2=7E-12						
100	41 *0 - 346					
0	0.00 346 - 1730					
O	<u> </u>					
<u> </u>	0.00 4000 - 10000					

- degree of damage
- vulnerability of the building portfolio
- % of damage of the building construction

building damage cost = building damage *
construction value * building density * burnt
area

USING THE MODEL WITH GIS DATABASE

USING THE MODEL WITH GIS DATABASE

Building damage cost increases with burnt area

- fire intensities higher than 1730 kW/m are associated with crown fires
- → expected to result in higher costs

BUILDING DAMAGE COST: SIMPLIFIED MODEL

LIMITED INFLUENCE DIAGRAMS

INTRODUCTION / DIFFERENCE TO BAYESIAN NETWORKS

- short: LIMIDs
- model decision alternatives in uncertain environments and the utilities associated with these
- BN does not explicitly cover concepts of utility and decisions
- LIMID = BN with utility nodes and decision nodes
- normal nodes are called chance nodes

CHANCE NODE

- uncertain events or factors that influence the outcomes
- at least 2 states

DECISION NODE

- represents a point of decision or choice in the model
- actions or decisions that can be taken
- at least 2 states
- decision maker has control over selecting an action / decision

Invest

Invest	\square
0.00 Inv	est
0.00 Not	invest

UTILITY NODE

- represents utility / value of the outcome
- allows for incorporating preferences / evaluations into the model
- Utility = Utility of each Decision * Chance of the Decision being made
- Global Utility = Sum of all utility nodes in model

SIMPLE EXAMPLE: UMBRELLA

utility					
weather_forecast	Ra	iny	Not rainy		
take_umbrella	Take	Don't take	Take	Don't take	
Utility	0	-2	-1	1	

THE OIL WILDCATTER

- HUGIN sample
- perform an expensive drilling?
- perform expensive seismic test?
- uncertainty about the presence of oil

THE OIL WILDCATTER

THE OIL WILDCATTER

🛂 Drill							×
Test Seismic	Test	Test			No test		
Seismic	d	op	di	þ	bр	di	
Drill No Drill	1	1	þ	1	1	1	
No Drill	þ	þ	1	þ	þ	þ	
		•					+
	4						F

SOURCES

- https://mediatum.ub.tum.de/doc/1145639/1145639.pdf
- https://media.cnn.com/api/v1/images/stellar/prod/220730210827-01-mckinney-fire-0730.jpg?c=original
- https://download.hugin.com/webdocs/manuals/9.4/htmlhelp/index.html
- Own models created with HUGIN Expert