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Object-Oriented Bayesian Networks for Detection
of Lane Change Maneuvers
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and Wolfgang Rosenstiel**

Abstract—This article introduces a novel approach towards the
recognition of typical driving maneuvers in structured highway
scenarios and shows some key benefits of traffic scene modeling
with object-oriented Bayesian networks (OOBNs). The approach
exploits the advantages of an introduced lane-related coordinate
system together with individual occupancy schedule grids for all
modeled vehicles. This combination allows an efficient classifica-
tion of the existing vehicle-lane and vehicle-vehicle relations in
traffic scenes and thus substantially improves the understanding
of complex traffic scenes. Probabilities and variances within
the network are propagated systematically which results in
probabilistic sets of the modeled driving maneuvers. Using this
generic approach, the network is able to classify a total of 27
driving maneuvers including merging and object following.

Index Terms—Bayesian Network, Lane Change, Maneuver
Recognition

I. INTRODUCTION

HE identification and understanding of traffic scenarios

are important key elements of modern driver assistance
systems. The challenges for these issues are incomplete knowl-
edge, scene complexity and sensor uncertainties. This requires
reasoning under uncertainties. A number of probabilistic ap-
proaches can be found in the literature that address this field
of research, namely Dempster-Shafer-Theory (DST), Hidden
Markov models (HMM), or Bayesian networks (BN).

Our work deals with the understanding and classification
of driving maneuvers. The recognition of driving maneuvers
(e.g. lane change, object follow, overtake) and the degree of
driver’s attention have been studied by use of the DST [1],
[2]. Similar problems (including driver intentions, vigilance,
turn maneuver, etc.) have been treated with HMM [3], [4],
[5]. Bayesian networks have been utilized for the recognition
of driving maneuvers like lane change, overtake or left turn
maneuvers [6], [7]. They have also been used to recognize
turning maneuvers as well as cross over at red traffic lights [8],
[9]. Other applications of Bayesian networks involve cut-in
maneuvers [13] and emergency braking [10], or the prediction
of driver behaviors (e.g. driver intention, driver stress) [11],
[12].

A comparison between the different probabilistic methods
can be found in the field of research in multisensor data fusion
[?], [?], [?]. The DST deals with measures of “belief” and
is based on the non classical idea of “mass” as opposed to
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probability used in the Bayesian approach. In general though
both methods are found to be robust over the entire sen-
sor information domain, and show comparable performance.
HMM can be viewed as an extension of the Bayesian network
containing three time slices of the same BN at three consequent
time points (a.k.a. dynamic BN).

Our pursued approach for the recognition of driving ma-
neuvers profits from the advantages of OOBNs to deal with
interrelated objects [15]. They offer a natural framework to
handle vehicle-lane and/or vehicle-vehicle relations. These
advantages are additionally boosted due to the exploitation of
the left/right symmetry of a lane-change-course. The causal
probabilistic treatment of situation features allows exploiting
heterogeneous sources of information and the quantitative
incorporation of uncertainties in the measured signals. Further-
more, they provide a framework for systematically structured
“a priory” knowledge representation of the problem domain.
Last, the object-orientated modeling is efficient for exploring
repetitive structure patterns. This allows reusability through
the building of model libraries containing generic fragments
of object-oriented Bayesian networks (OOBN-classes).

In this paper we focus on the theoretical background of
our approach as well as its application for the modeling and
the recognition of driving maneuvers in longitudinal traffic
scenarios. Section II is dealing with the properties of object-
oriented Bayesian networks (OOBNs). In section III we outline
the features of a driving situation for the modeling of lane
change maneuvers, their calculation and our approach to
handle uncertainties. In addition, we describe the developed
OOBN for the recognition of driving maneuvers. The corre-
sponding results and outlook on future work are summarized
and discussed in section IV.

II. OBJECT-ORIENTED BAYESIAN NETWORKS (OOBNS)

Generally Bayesian networks are utilized for the repre-
sentation of non-observable events, inference on possible
conclusions, and they represent specific characteristics of
probabilistic models. The advantage of such a probabilistic
approach lies in the capability to handle all uncertainties
implicitly. Uncertainties can originate from measurement noise
in the sensor data as well as from incomplete knowledge of
complex dependencies in real world situations. For example,
due to complexity reasons, not all maneuver variants can be
modeled. Moreover changes in the driving- and environmental
conditions can lead to uncertainties in the models.

A BN represents a directed, acyclic graph, consisting of
nodes and links connecting the nodes. The nodes represent
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Fig. 1. Example for an not object-oriented Bayesian Network

discrete random variables X with n states xi,...,x,. The links
induce a set of conditional in/dependence relations between
the nodes (conditional probability distributions CPD). Thus
the CPD expresses the strength of the (causal) dependency
relations between the nodes in this model. These relations
change when the states of a subset of the nodes are known
or observed events. Therefore evidence on a variable provides
information on its states and its conditional probability distri-
bution. As already mentioned the graphical structure of a BN
expresses the knowledge on causal in/dependencies between
the variables and thus requires expert knowledge to build the
network. This has the advantage that a-priory knowledge of
the problem domain can be taken into account. The explicit
exploitation of causality allows a compact representation of
the joint probability distribution for all the variables involved
in the model. The object-oriented Bayesian network possess
all advantages of classic Bayesian networks [14] and contains
instance nodes in addition to the classical nodes. An instance
node is an abstraction of a network fragment into a single
unit (network class) [15]. Therefore instance nodes can be
used to represent different network classes within other nets,
and they transmit all properties of the net fragment (encap-
sulation). Thus an object-oriented network can be viewed as
a hierarchical description/model of a problem domain. Every
layer in this hierarchy expresses another level of abstraction
in the OOBN model. This simplifies the modeling since the
OOBN-fragments at different levels of abstraction are easier
to discuss and to review. An intuitive understanding of the
OOBN modeling can be provided, if one considers first a
usual (non object-oriented) Bayesian network (Fig. ??) and
transforms it into an OOBN (Fig. ??). The usual BN structure
is build as follows. The evidence e'r,e’, e’ support the
corresponding hypothesis 4'* of same type. These evidence
are computed from different input data characterising each
object. The various hypotheses from type h'* combine to a
new hypothesis of type A%:. Finally the combination of A%
leads to a new hypothesis 43. Moreover, if an extra evidence
is essential, it can also be considered for 43. As one can see,
although a usual BN is very good structured by nature, this has
not been exploited in their construction, making them to appear
not ergonomic, if consistent BN change is necessary. For
example, if a new evidence ¢’ should be added to a hypothesis
hlx, it has to be added at four different sub-networks of the
same type in the non object-oriented version of the BN. Similar
difficulties appear, if changes in the structure of a certain

Instance A®

Fig. 2. Object-oriented Bayesian Network
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Fig. 3. Hierarchical OOBN-layers for the recognition of driving maneuvers

hypothesis type are needed. This is much easier to realize with
an OOBN, which represents models a specific combination of
variables as a level of abstraction. The above described usual
BN is then transformed into an OOBN with three levels of
abstraction A!, B' , C', see Fig. ??. The first level absorbs
the evidence combined into the basic hypothesis /!. Thus,
each hypothesis of the same type corresponds to an instant
node A’ and can be viewed as a representation of a certain
feature. One abstraction level higher B’ combines the objects
A',A? of an instance A’ into hypothesis 42. These are then
combined to an instance C' with hypothesis 43, representing
qualitative relations between the involved objects B' B> for
each instance B! considering also a new evidence ¢'. Thus,
one obtains a network, which is modular, structured, easily
extendable and modifiable. If one needs an extension of the
structure, it is then sufficient to edit just the affected instance
and this modification will be inherited in all instances of the
same structure type on all levels of the OOBN.

III. MODELING AND RECOGNITION OF DRIVING
MANEUVERS BY THE USE OF OOBNS

In this approach the driving maneuvers are modeled as
object-to-object relations, such as vehicle-lane relations and
vehicle-vehicle relations. These relations are modeled on four
different hierarchical levels of abstraction (Fig. 1). The first
level promotes to model the properties of sensor measure-
ments and delivers the evidence input data for the devel-
oped Bayesian network. On the second level the vehicle-
lane-marking relations represent the likelihood that a vehicle
crosses a specific lane marking. These vehicle-lane-marking
relations are modeled by exploiting the assumed left/right
symmetry of lane change maneuvers. The next level takes
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Fig. 4. Model for handling of uncertainties in measured data

all vehicle-lane relations into account and evaluates potential
lane-change maneuvers. The combination of vehicle-lane-
relations for any two vehicles leads to nine movement classes
at this level of abstraction. This represents the pairwise rel-
ative movement of any two vehicles with respect to their
associated lanes. All existing vehicle-vehicle relations are
considered within the fourth level. Regarding all possible
relative positions between the vehicle pairs: to the left, to the
right or in front, one obtains 27 driving maneuvers, which
are recognizable by our OOBN. The “cut-in maneuver” is
just one from these 27 feasible maneuvers. The hierarchical
layers allow a structured overview and represent an easily
extendable design for the recognition of driving maneuvers.
In the following section the four levels of abstraction are
described in more details.

A. Modeling of Sensor Data

At the first level of our OOBN model we are using a generic
network class for the handling of uncertainties in the sensor
data. This data is used as direct evidence in the OOBN model
and as well as soft evidence for our defined situation features,
which are estimated by physical models.

In general, the measured signal Seqsureq 1S composed of
its real value under measurement Seypecreq and its disturbance
(sensor noise) s, around the real value, i.e. Speqsured =
Sexpected + Serr- In many applications, the sensor noise is
simplified modeled as a zero-mean Gaussian random process.
In that case, the disturbance is fully described by the variance
Serr = 8 52. Thus the measured signal is conditionally dependent
on the random changes in these two variables:

p(smeasured |sexpected7 S52 ) = N(Sexpected »S52 )

where N (sexpected,s(,z) denotes the assumed Gaussian distri-
bution [?]. Fig. 2 shows the structure of our network class
for handling of uncertainties due to measurement noise within
a sensor device. To deal with the uncertainties in the sensor
signals and to be able to distinguish between the states of
deduced features, the measured signals are discretized in
predefined partitions. Through the observation (evidence) of
the variables $eqsureq and their variances ss2 the probability
distribution of their real values sgypecreq Can be obtained.

B. Modeling of the Driving Behavior During a Lane Change
Maneuver

This section constitutes the background, which prepares the
OOBN model to mimic the human reasoning for maneuver

recognition. It starts with the observation and evaluation of
characteristic features, which are used to build the vehicle-
lane and/or vehicle-vehicle relations at the higher levels of the
OOBN. A model simplification is achieved due to the observa-
tion, that a lane change towards the right or left is symmetric
from the point of view of a vehicle positioned in its associated
lane. To incorporate the symmetry into the model, we have
introduced for all n observable vehicles {veh,...,veh,} the
corresponding curvilinear coordinate systems:

K;, se{L,R}, i€ {vehy,...,veh,}

which are attached to the left/right (L/R) lane marking (or road
boundaries) (Fig. 3A).

Some suitable characteristic features were published ear-
lier [13], [?]. This approach represents a certain extension of
this work. The extension includes

« modeling and computation of the features for both left
and right lane-coordinate-system, (Fig. 3A)

« the new introduction of occupancy schedule grids around
a vehicle, taking into account the occupancy time of other
objects in the grid,

« and consideration of the relative position of its neighbor
objects.

These are performed for all observable vehicles, recognized
lane markings or road boundaries. The following situation
features are used:

« the lateral offset between a vehicle and a lane marking
0}, and the lateral speed vj ,, s € {L,R} (Fig. 3B),

o the time to lane marking crossing 7}/, the lateral acceler-
ation a; atye, A8 Well as the head angle relative to the lane
course ¢;,., (Fig. 3C),

« the relative position of neighboring vehicles Pos?, p €
{left,right,infront}

« the occupancy schedule grid which identifies if a certain
cell of the grid is occupied or free. It is characterized
by the following variables: The time TTkEm a vehicle
needs until it appears into a certain cell of the grid
ke{l,f,nb,fl,fr,bl,br}, the time T%‘Dm a vehicle needs
until it disappears from a cell, as well as the correspond-
ing distances from the vehicle to the considered cell %,
ie. Sjp and S5, (Fig. 3D).

Thus, the following novel definition for the feature vector F
of a traffic situation is obtained:

S50 S50 S50 S,0 8,0 Dl
F. . _ Olar> V_lat’ alutmux’ lane’ Tlch ) Pos
sik,p J | ) )
TEO(‘(‘ ’ TE()CC ’ TDOCC ’ TDUCC

Thus, the feature vector of the entire observable traffic situa-
tion has the dimension #n-45.

C. Calculation of the Feature Vector

We base our computation on two different models repre-
senting the vehicles behavior: a lane follow model and a lane
change model. Here it is assumed that the driving states of all
observable vehicles as well as the lane course are detected by
the on-board sensors and consequently can be considered as
known.



INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, VOL. 4, NO. 1, JANUARY 2012

A B
0
/ R
iy //:Ri Olat ?
& e <—j
LI' R e
K ,JK ! C AR
A G &—
4 UR
S i ~R, lat
em T : em T
KL,'L'L : KR,’L
>L i —,i
* 'ey
(S {ObjlasObjn}

Fig. 5.
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1) Lane Follow Model: The lateral velocity of the con-
sidered vehicle vy, within the lane and the distance to the
left/right lane marking o;,, are calculated according to the lane
follow model [16]. The lane marking parameters L are given
by: L = (co,¢1, Pane, dYiane)- Hereby co,ci are the curvature
and the curvature derivation, ¢;,,. is the lane angle error and
dYiane 1s the distance to the lane marking. The lane marking
course is defined by the following equation:

() K (frr(x),qLr(x))"
fir(x) = x
1 1
gLF(x) = dylane+7'CO'x2+*'C1'x3

2 6

Fig. 4 shows an example for the right coordinate system KX
spanned by the vectors T and N. In this coordinate system,
the position of the object is given by Fopj , = (0,y1)gr. To
determine the distance y, between the lane marking and the
object, the following equation system has to be solved:

F’()ijlane = ?(XJ_)Klane +y1- N(xl)Klane’
- Xobj
Fobix = R(tane)- (yobj')
obj Kego
The matrix
_ coSs (¢lane) —sin (¢lane)
R(rane) = <Sin (Drane) <08 (Qrane)

defines a 2d rotation about the angle @;,,.. Solving the
equation we get the unknown values (x,y, ). The distance
from the vehicle to the lane marking is then calculated as
follows

1
OlatKR = yifi'Bobja

where B,,; stands for the object width. The velocity of the
object is measured in the EGO coordinate system K, and

C R D Occupancy
Schedule

¢R Grid !
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A: Symmetric lane-coordinate-system for each vehicle; B,C,D: Situation features for a lane change maneuver, in the right coordinate system (B:

ego

Fig. 6. Calculation of the lateral distance to the lane marking

is given by the vector Vopji, = (Vx;Vy) K. 1he object ve-
locity in the KR coordinate system is calculated by correcting
the velocity v, JKego about the angle ¢;,,. between the lane
coordinate system and the EGO vehicle minus the angle ¢,
between the lane coordinate system and the unit tangent vector

T. The lateral velocity VlatKR can be calculated by:

— Vx o
Viatgg = = R(¢lane - ¢L) : ( xabl)
Kego

Vyoh J

¢ = [T(x))

2) Lane Change Model: Since the previously presented
situation features (dja,,.» Qane, Tier) are not directly mea-
surable, these quantities must be estimated. For this purpose
we introduce in this chapter a model for planning a lane change
trajectory. After estimating the parameters of the lane change
trajectory, the desired situation features can be calculated.
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Fig. 5 shows a model for the trajectory of a lane change
maneuver, which can be modeled by a third order polynom
introduced in [17].

y= fLC(x) = az- (x 7xstart>3 +az- (x 7xstart)2
+ a1 (x—Xsart) + a0
Xstart < X < Xgrars +D

where D denotes the transition length of the lane change in
x direction from the maneuver beginning until its end. To
determine the unknown coefficients a3, as,ay,aop, the following
conditions on the lane change trajectory have been formulated:

f(O) = Ystart, f(D) = Yend
df _ af .«
T =0 Fm=o

The boundary conditions determine, that the y offset at the
beginning, respectively at the end of the modeled trajectory,
take the values yyqy Or yenq correspondingly. Moreover, at
the beginning, respectively at the end, of the lane change
maneuver, the tangent to the state transition curve is equal
to the tangent to the corresponding lane. The solution of the

ysl,m-!
fre (z)
Yend 3
Tstart Tstart + D
Fig. 7. Lane change trajectory

system of equations yields the coefficients:

ao = DYstart
aq =0
o 3 (Yend = Ystart)
@ =
D
- —2 - (Yend = Ystart)
ay =

D3
If the vehicle should not exceed a certain maximal lateral

acceleration a4, during the entire lane change maneuver,

then the system should satisfy the following condition:
2

7 -

>~

Alatygy

Considering the simplifying assumptions, that the longitudinal
velocity vy, is approximately equal to the velocity v,;; and

that the longitudinal acceleration a,, of the vehicle can be
neglected, i.e.

X = Vxopj & Vobj

= Ay, R 0
the second temporal derivative of the function fi¢(x) reads:
d*f
dr?

The above mentioned requirement on the maximal lateral
acceleration a4, leads to the following condition

ef |
0]

= v%hj~(6-a3~x+2-a2)

d*f

d*f
S o)

dar?

2 0 (end —Ysart)

Vobj : D2 S Alatygx

Thus, the transition length D of the lane change maneuver
reads:

6- |)’end _yslart|

D >
|alatmax |

Vobj *

Since the modeled lane change trajectory shall be defined only
on the intervall [Xgg,Xstarr + D] the entire lane change model
is defined as follows:

Ystart s X < Xstart

as - (x‘xstart)3+

a - (x'xsturt)z +ao

y= frc(x) =

y Xstart <X < Xgarr +D

Yend s X > Xstart +D.

The modeled lane change trajectory is determined using a
segment of the actually driven trajectory, where we take the
last N positions (£;,9;), i € {0,...,N} of the vehicle into
account (Fig. 6).

i
i
Ystart % %
|
i
i
T
lane marking
-?— — — —
I
|
|
|
|
Yend -
i
Lstart Tstart + D
Fig. 8. Lane change trajectory estimation

A complete description of the lane change model requires
the estimation of the trajectories parameters from the history.
These parameters ar€ Ysari, Yend> Xstart> Glaty,- Since the
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parameter y,,q; is known, the estimated parameter vector z is
defined as follows:

Xstart
Ystart

Aatyy

The function §; = fic(z,%;) defines the polynomial model.
Under the assumption, that only the j components of the
trajectory are error-prone, i.e.

fLC(ZaxAi) +€i, ic {0a7N}

an optimal parameter vector z has to be found, which ensures
a minimal error:

yi =

N
7 = argmzinz | fre (e, %) — 9if>
i=0

The latter is achieved by computing a non-linear fit of a lane
change trajectory in the points of the vehicles trajectory history
using the Levenberg—Marquardt optimization [?], [?], [?].

The above mentioned situation features 7;), and ¢; .
(Fig. 3C) are derived from the characteristics of the matched
lane change trajectory. The object’s head angle relative to the
lane course is given by the derivative of the function:

df
¢l(me = a(Pobja(,)

The time to lane marking crossing is given as

Tiy = Xstart 1 Xroot

Vobj
where x,,, is the intersection of the modeled trajectory with
the x axis (i.e. the lane marking, see (Fig. 6)).

3) Occupancy Schedule Grid: An occupancy schedule grid
is not to be confused with the classical occupancy grid known
from robotics. Here, the cells are not just marked as occu-
pied or not occupied. Instead they carry the speed-dependent
information when a cell will be occupied or will become
free. The environment perception supplies the position of
neighbor vehicles relative to the EGO vehicle. The considered
occupancy schedule grid is dynamically centered around the
vehicle. Here, the positions of its dynamic grid cells are
computed. For each cell and each vehicle in a scene, the time
to enter or disappear T7g rp together with the corresponding
distances Stg rp are evaluated. Thus a measure of when a
cell will become free or occupied is established. Since all
computations are performed in a curvilinear coordinate system,
a simple equation of motion is sufficient for the computation of
the occupancy time in the occupancy schedule grid (Fig. 3D):

1 2

5 el T7E 1Dy T Vel * TTETDyee = STE,TDpee =0

The values Stg7p,. can be directly determined from the
position of the objects.

4) Relative Vehicle Position: The relative position of the
vehicles (Pos?, p € {left,right,infront}) is calculated based
on their lane position. If a vehicle is situated in a certain
(predefined) distance in the lane, then the vehicle is positioned
on this lane. Thereby, there are three lanes: Left-Lane, Right-
Lane, EGO-Lane. These lanes are computed in a preprocessing
step.

D. Lane Marking Crossing Hypothesis

The situation features described in III-B are used to model
the lane change behavior as a relation between the considered
vehicle and its associated left (or right) lane marking. They
are combined into the three nodes: Trajectory, Lateral Evi-
dence and Occupancy Schedule Grid. We associate the same
weights to these basis hypotheses in oder to create redundancy
(therefore to achieve more robustness if one sensor fails). Their
combination express the probability for the hypothesis Lane
Marking Crossing (Fig. 7).

The node Lateral Evidence describes the driving state of
the vehicle in the lane (Fig. 7). The node Trajectory collects
situation features, estimated from the trajectory’s history. The
node Occupancy Schedule Grid describes the occupancy of
the grid-cells around the considered object. If a cell is free
for a predefined time, we assume that the vehicle can move

unobstructed towards this cell.

Occupancy Grid
o

/

Lateral Evidence
Lane Marking
Crossing

OOBN instance modeling the hypothesis Lane Marking Crossing

Fig. 9.

In order to recognize a lane change maneuver, one has
to parametrize the nodes expressing the above mentioned
basic hypotheses. The parametrization of these nodes is shown
in Fig. 7 by means of the node Lateral Evidence. The
parametrization of the conditional probabilities for the other
nodes is analogous.

The lateral velocity of a vehicle in its associated lane
Viatexpected a0d its lateral offset to the lane marking 04 expected
are extended by uncertainties as presented in III-A (Fig. 2,
Fig. 7). These two values are summarized in the node Lateral
Evidence.

The conditional probability of the node Lateral Evidence
P(LE|Viat expected> Olat expectea) 15 Modeled as product of the two
independent conditional probabilities P(LE|Vitexpecrea) and
P(LE|01atexpectea)- The last are sigmoid functions with scaling
parameters dyzqs, Dyrar, Aoiar s Polar» Which are defined as follows:

1

Aylar + exp(bvlat *Viat expected)

P(LE‘Vlatexpected) =

v Viatexpected € {-1.0,{0.1},0.5}
1
and P(LE |04t expecte = . )
( | @ expect d) 1 Aolat +exp(bolat 'Olatexpected)
v Olatexpected € {_ 1 'Ov {0' 1 }7 1'0}

where 7m is a constant which normalizes the probabil-
ity. For simplification the indices s,i,k,p were omit-
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ted. Fig. 8 shows the shape of the modeled condi-
tional probabilities P(LE|Viatexpecred)s P(LE|Otatexpectea)> and

P(LE|Vlatexpected7 Olatexpected)'

P(LE|Vatsy, Otates,)

latesp [m }

[¢]

Pre ‘uv{ate“z;) )
ALE! o)

Vtat [7]

vlatm;p [%}

Olateap [m]

Fig. 10. Conditional probabilities of the node Lateral Evidence

E. Modeling of Lane Change Maneuvers

For the recognition of lane change maneuvers, the hypoth-
esis Lane Marking Crossing (LMC) towards right or left are
modeled as vehicle-lane relations. These are shown by the two
instance nodes in the BN fragment (Fig. 9). Instance nodes are
represented as rounded squares, while the output-interface-
nodes are represented as ellipses with shaded line borders.
To model lane change maneuvers, we consider elementary
actions, which a vehicle can perform. It can follow the lane
(f), leave the lane towards the left (/) or towards the right (r).
Since the hypothesis LMC is used for both left and right lane
marking crossing, one can identify three movement classes
(I,r, f) of a vehicle, which are logically combined in a node
Lane Change. In the case of lane change towards the right,
the logical parametrization of the node Lane Change reads:

IC=r <= (LMC;eﬂ = false N LMCjgpy = true)

Besides the single states (/,r, f) of the node LMC, their com-
bination (LMCj.s = true N LMC,igy; = true) is also possible
(e.g. because of wrong input data) and has to be also taken
into account. In that case, the states of Lane Change are
characterized by a uniform probability distribution.

Lane Marking
Crossing (Lefty

Lane Marking
Crossing

Lane Marking
Crossing (Right)

Lane Marking
Crossing

Lane Change

Fig. 11. OOBN fragment for the modeling of lane change maneuvers

F. Modeling of Driving Maneuvers

For the recognition of driving maneuvers one has to consider
also vehicle-vehicle relations R = (vehicle;,vehicle;), i,j €
{1,...,n},i # j. These are expressed by elementary driving
maneuvers, as outlined below.

For the purpose of modeling the elementary driving ma-
neuvers, we introduce the two nodes Movement- and Position
classes (Fig. 10). The node Movement classes is classifying

Lane Lane
Change Change

Movement Classes Position Classes

Driving Maneuvers

Fig. 12. OOBN for modeling of elementary driving maneuvers. It contains
the hypothesis Lane Change as instance and the movement-, position classes.

the relative movement of a pair of vehicles towards their
associated lanes. These results in nine movement classes
ALIrlf rl,rrrf, fl, fr,ff). The combination of all states
given by the nodes Movement- and Position classes results
in 27 possible elementary driving maneuvers, which two
vehicles can perform in relation to each other, as explained in
section III. In this framework, a cut-in maneuver is therefore
one case out of the 27 possibilities. It is defined as follows:
The preceding neighbor vehicle is moving onto the considered
vehicle’s current lane from the left or right side i.e. cutting in.
From here, one can deduce the logical parametrization for the
recognition of selected driving maneuvers. In the following
we list, as an example, the cut-in and cut-out maneuvers for
the considered vehicle; and its neighbor vehicle;.

cutingep, <= (LCyeny = f NLCyeny = 1 A PoSyepy = left)
cutingep, <= (LCyeny =1 NLCyeny = f A PoSyeny = right)
cutoutyep, <= (LCyeny = f NLCyeny =1 N POSyeny = infront)
cutoutyep, <= (LCyepy = r NLCyepy = f N POSyeny = infront)

IV. RESULTS

A typical traffic scene with different driving maneuvers is
shown in Fig. 11. The results in this section are based on
the relation between the EGO vehicle (veh;) and the vehicle
marked with a white rectangle (veh,). The frame numbers are
depicted at the top of the frames on the right hand side. These
involve the maneuvers: LaneFollow, ObjCutln, ObjFollow,
ObjCutOut.

The probability of the nodes Trajectory, Lateral Evidence,
Occupancy Schedule Grid, as well as the probability for
the hypothesis on crossing of a lane marking Lane Marking
Crossing are shown in Fig. 12. As described in the sections
above, these nodes contribute to the classification of the three
movement classes ([, # f) of node Lane Change. Figure 13
shows the probability for each movement class. The probabil-
ities, which were deduced as results for the recognition of the
driving maneuver, are depicted in the Fig. 14 and Fig. 15 for
the four showcases.
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Fig. 13. Showcases of a vehicle-vehicle relation veh; — veh,
(LaneFollowyep, 5, ObjCutlnyep,, ObjFollowy,p, ,, ObjCutOutyep, ).

Lane Marking Crossing 1D 3 (Left)
1.z

e LVIC
- Trajectory
1 Lateral Evidence 1
. Occupancy Grid

Lane Marking Crossing 1D 3 (Right)
2 — 1T
= Trajectory

nLateral Evidence

. Occupancy Grid

Probability
Probability

100 100
Frame Frame

Fig. 14. Probability of the nodes Trajectory, Lateral Evidence, Occupancy
Schedule Grid and Lane Marking Crossing for the left and right lane
coordinate system respectively

The final classification result of the OOBN can be seen in
Fig. 16. The classification result of a common ACC system
has two states “is relevant” and “not relevant”. These are
shown on the right axes and depicted by the dashed line.
As shown in Fig. 11, the considered vehicle is first on the
right side. The class LaneFollow (Frame 37) is classified.
Next, the vehicle is going to cut in, the class ObjCutln

(Frame 67) wins. From the ACC System point of view the
vehicle is going to be relevant. After the maneuver ObjCutln,
the EGO vehicle follows the considered object, so the class
ObjFollow (Frame 100) is classified. Next, the object is going
to cut out (class ObjCutOut (Frame 132)). After the maneuver
ObjCutOut, the EGO vehicle once again follows the lane (class
LaneFollow (Frame 151)). From the ACC system point of view
the considered vehicle is not relevant anymore.

Lane Change ID 3

T T T — F OLLOW
———
1 i LEFT
08 1
rand
3 os 1
]
<Q
[=]
04 m
o
0z 1
. RE———
h 20 0 e a0 To0 120 0 750
Frame
Fig. 15. Probability of the node Lane Change (/, 1, f)
Driving Maneuvers 1D 3
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1
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Fig. 16. Probability of the driving maneuvers ObjFollow, LaneFollow
Driving Maneuvers 1D 3
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Fig. 17. Probability of the driving maneuvers ObjCutln, ObjCutOut

We performed the same evaluation online during the test
drive. The duration of the entire test drive was about twelve
hours. In total 968 maneuvers were recorded by the evaluation
module. In order to evaluate online the results of the classi-
fication, a state machine has been developed, where the state
transitions has been marked as False Positive, False Negativ
or No Error. A few examples for these state transitions are
shown below:

o False Positive: ObjFollow — ObjCutOut — ObjFollow
o False Negative: ObjFollow — LaneFollow
e No Errror: ObjFollow — ObjCutOut — LaneFollow
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Fig. 18. Result of the final classification

Fig. 17 shows the error statistic for the respective maneuvers.
After the evaluation 812 maneuvers are classified correctly,
42 maneuvers exhibit false positives, which means that the
classification is not correct. Moreover, 114 are false negatives,
which means that those are not recognized. Fig. 18 depicts the

FALSE PosmvEI
FALSE NEGATIVE. -

i i i
0 100 200 30

i i i i i
0 400 500 00 700 800
Number of Error

Fig. 19.

Error statistic

812 correctly classified maneuvers and their categories.

EGOCUTOUT

oBJCUTOUT

EGOCUTIN

OBJCUTIN

100 150 200
Number of Maneuver

Fig. 20. Maneuver statistic

The maximum probability p,.. and the time /At have been
measured and logged for each maneuver execution. The time
At denotes the difference, between the point in time the
maneuver has been recognized by the Bayesian network, and
the point in time the ACC system classified the vehicle to be
“relevant” or “not relevant”.

The average value for the probability is E(pmax) = 0.916.
Larger likelihood is an evidence that the classification result

is more reliable. Therefore we believe that our approach is
well suited to discriminate driving maneuvers. Using our novel
approach, we are able to recognize a maneuver about E(At) =
—0.605[s] earlier compared to the classification result of the
ACC System.

V. CONCLUSION

In this paper, we presented an object-oriented approach for
the recognition of driving maneuvers with OOBNs. The mod-
ularity and reusability of Bayesian network fragments were
simplified through the consideration of two model properties:
symmetric lane-coordinate-system for each vehicle and pair-
wise defined object-object relations. The hierarchical modeling
allows the construction of various model libraries with generic
OOBN-fragments. This leads to models with good overview
and an easily extendable design. Our approach allows to
handle uncertainties in the model and in the measurements.
The probability distribution of certain maneuvers between two
vehicles can be read out from the node Driving Maneuver.

Future work will focus on the analysis of the performance
for the developed network and on possible improvements. In
order to detect lane change maneuvers at an earlier stage,
one needs situation features, such as indicator or shoulder
check, for earlier maneuver indication. These features can
then contribute to the Bayesian network and help to recognize
lane change maneuvers with a high reliability at an earlier
stage. Moreover one can adjust the network parameters online
depending on the available free space around the vehicle. If
for example the vehicle moves towards a solid boundary, one
could adjust the parameters such that a collision with the solid
boundary can be detected at an earlier stage and possibly be
prevented. However, there will always be a trade-off between
an earlier detection and the false positive rate of our algorithm.

Moreover, we will study if the performance can be boosted
by the extension of the static network to a dynamic OOBN.
Due to the fact that the parametrization of the network is
time consuming, but also for the reason of improving the
system performance, learning algorithms can be employed.
In addition, the recognition of the criticality of an observed
situation or maneuver can be extended by physical models
exploiting the relative states (distance, speed, acceleration)
between the vehicles.
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