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A B S T R A C T   

For ensuring a robust traffic management system, monitoring traffic conditions promptly by estimating the 
congestion level is crucial. The current measures can only represent the variations of specific standard param
eters and do not consider the probabilistic property. In this paper, a Bayesian Network (BN) based probabilistic 
congestion estimation approach is proposed. The proposed BN-based approach considers both speed and volume- 
related measures and provides a probabilistic estimation of the probable congestion state. For recurring and 
nonrecurring congestion, two different BN models were developed and implemented in realtime datasets. The 
case study results showed that the proposed BN models could quantify the probable congestion level in terms of a 
probability for each state in a variable, at the presence of different combinations of prior variables’ state. Further, 
the proposed BN based approach can be employed in the decision-making process that involves the probabilistic 
estimation of traffic congestion with a vision of the realtime circumstances.   

1. Introduction 

In this era of continuous urbanization and population growth, traffic 
congestion has been increasing across the world day by day. Traffic 
congestion is worsening nowadays due to high population density, an 
increasing number of infrastructures, emerging technological advance
ments and growth in motor vehicles, and the proliferation of rideshare 
and delivery services [1,2]. In general, congestion can be defined as the 
traffic condition when the travel demand exceeds road capacity [3]. 
During congestion, the normal flow of traffic is interrupted due to high 
vehicle density resulted in excess travel time [4]. Traffic congestion in 
urban metropolitans could be recurring or nonrecurring, depending on 
the causes that induce congestion [5]. Recurring congestion could occur 
due to excess demand, insufficient infrastructures, variation in traffic 
flow, and signal [5,6]. On the other hand, nonrecurring congestion could 
be a result of incidents, work zones, weather-related, and special events 
[5,7]. In recent years, the social, economic, and environmental impacts 
of traffic congestion have been increased significantly with the growth 
of the population. Due to the more significant amount of travel delay 
and cost caused by congestion, the urban transportation system is 
affected considerably. In 2014, people in the United States (US) traveled 
6.9 billion extra hours and purchased 3.1 billion additional gallons of 
fuel, extra costing a total of $160 billion [8,9]. As the existing in
frastructures are unable to accommodate the increasing number of au
tomobiles, congestion also increases. In 2017, the INRIX Roadway 

Analytics estimated the cost to drivers was about $480 billion in the 
most congested 25 cities of the US due to lost time, wasted fuel, and 
carbon emitted during congestion [10]. In 2018, the total cost of lost 
productivity in the US due to congestion was $87 billion [11]. In 2019, 
the average American drivers were estimated to lose 99 h due to traffic 
congestion, which equals to about $1377 in monetary value [12]. 

Moreover, congestion is partially responsible for the physical 
degradation of transportation infrastructures, and consequently, for the 
reduction of network performance [13]. Several network recovery 
strategies have been developed to recover the damaged network per
formance, such as periphery recovery or preferential recovery [14,15]. 
However, most of these strategies may not be sufficient enough to 
improve the network resilience or applicable to traffic failure induced by 
congested traffic conditions [16]. For many years, many attempts have 
been taken to monitor and minimize losses due to congestion with 
different approaches [17–20]. A variety of congestion detection and re- 
routing strategies based on fuzzy logic and neural network classifier was 
developed to minimize congestion. Bhandari et al. [17] performed a 
survey on these strategies. A reinforcement learning-based variable 
speed limit (VSL) control strategy was developed to reduce travel time at 
freeway bottlenecks [18]. Another commonly applied method of mini
mizing traffic congestion is to assign tolls to streets and roads so that 
drivers are induced to take alternative routes [19]. This method helps in 
enhancing the distribution of traffic across the road network. One of the 
significant reasons for the enhancement of congestion is inefficient 
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vehicles. Assessing vehicles ensures a sustainable transportation system. 
Mitropoulos et al. [21] proposed a method that combines fuzzy logic and 
Monte Carlo Simulation (MCS) to assess urban transportation vehicles to 
ensure the sustainability performance of vehicles. 

For the last few years, predictive analysis has been extensively 
explored in the research field of intelligent transportation systems. A 
variety of machine learning and neural network algorithms have been 
applied for this purpose. Chen et al. [22] proposed a long short-term 
memory model for predicting traffic model using open-source online 
data. The proposed model showed better prediction compared to the 
multilayer perceptron model, decision tree model, and support vector 
machine model. A decentralized deep learning-based method was pro
posed by Fouldgar [23]. Based on their approach, the congestion state of 
a node in realtime can be predicted based on the congestion state of the 
neighboring nodes or stations. Chen and Yu [24] developed a novel deep 
convolutional neural network-based method by modeling periodic 
traffic data for short-term traffic congestion prediction. The traffic state 
of a transportation network varies with time. Thus, it is necessary to 
consider the temporal correlations of a transportation network while 
predicting traffic congestion. Zhang et al. [25] proposed a deep 
autoencoder-based neural network model to learn the temporal corre
lations of a transportation network and predicting traffic congestion. 
Predictive analysis using traffic data has not only been used to predict 
traffic congestion but also has been used for other applications. Such as 
accident predictions [26,27], traffic demand analysis [28,29], and pre
dicting traffic speed and flow [30–32]. 

To build a resilient traffic control management system, proper 
monitoring of the traffic conditions is necessary. By doing this, the 
congestion levels can be quantified promptly, and preventive actions can 
be initiated before the peak of the congestion hours. In recent years, 
researchers and transportation experts have developed different ap
proaches to estimate traffic congestion. The current measures are 
established depending on various standard parameters, such as speed, 
travel time, delay, level of services, or other indices. A survey on the 
current traffic measurements was performed as the authors’ previous 
work [33]. The applicability of these measures varies in countries, as 
well as institutions [34,35]. For example, the Roadway Congestion 
Index was used by the Texas Transportation Institute in the 1994 urban 
mobility report on the US [36]. In the congestion report of 2006, the 
Washington State Transportation Department used the average peak 
travel time [37]. The LoS (level of services) developed in the Highway 
Capacity Manual (HCM) [34] defines six levels in the US. In Japan, the 
LoS is set to be three levels. For the annual congestion trend reports of 
2016–2018, the US Department of Transportation (DoT) used conges
tion hours, travel time index, and planning time index [38–40]. 
Although various measurement approaches have been used in different 
authorized departments, these approaches are limited to their category. 
For example, the speed performance index (SPI) can measure speed 
variation with time, and V/C can represent vehicle count or volume 
variation. However, it is necessary to observe all the possible standard 
parameters, such as speed, travel time, delay, and level of services, 
which cannot be achieved by the available measures. That is why a 
measurement approach that is more comprehensive in the sense of 
representing different important standard parameters needs to be 
developed. Additionally, most available measures provide a determin
istic estimation of the congestion level with discrete values which could 
lack in presenting the real uncertain scenario in many cases. 

In this paper, a Bayesian network-based probabilistic traffic 
congestion estimation approach is developed. A BN is a probabilistic 
approach that can estimate the probability of occurring an event 
considering the effects of different variables. Traffic congestion can also 
be modeled using BN, which could account for various performances. 
The BN has been used for predicting traffic congestion and many other 
applications for the past few years [41–44]. Kim and Wang [45] used a 
Bayesian network to predict traffic congestion at the presence and 
absence of sudden incidents. A dynamic Bayesian network-based 

congestion prediction model was developed by Fan et al. [46] to pre
dict the diffusion of congestion in transportation networks. The dy
namics of traffic using probe data, which is the byproduct of sensors data 
and other application data, were investigated by Hofleitner et al. [42]. 
BN has also been used for predicting the duration of traffic accidents 
[27]. Moreover, a Bayesian modeling framework was developed to 
analyze the crash severity effects on the traffic management system 
[47]. Zhu et al. [48] used Bayesian networks for predicting short-term 
traffic flow. Another significant use of BN was detecting nonrecurring 
congestion. Li et al. [49] proposed a coupled scalable Bayesian robust 
tensor factorization model to detect nonrecurring congestion. In addi
tion, Bayesian inference was used for model selection and applications 
to urban mobility [50]. Although BN has been implemented in various 
traffic-related applications, combining different performances to make a 
probabilistic estimation of the congestion level is a new area to be 
explored. 

This paper aims to address the current challenges and utilize the 
potentiality of the Bayesian network approach to make a probabilistic 
estimation of congestion. The objectives of this research are to (1) 
develop the BN model for estimating both recurring and nonrecurring 
traffic congestion, (2) combine different performance measures while 
assessing probable congestion level, and (3) implement the developed 
BN network with a realtime dataset. The rest of the paper is organized as 
follows. Section 2 illustrates the concept of the Bayesian network. The 
proposed BN-based approach for estimating recurring and nonrecurring 
congestion in a probabilistic manner is elaborated in Section 3. There are 
ten scenarios presented for each congestion scenario in Section 3. Sec
tion 4 discusses the benefits and limitations of the BN approach. Finally, 
Section 5 summarizes the key findings with the conclusion. 

2. Bayesian network 

A Bayesian network (BN) is a directed acyclic graph (DAG) with a 
collection of nodes and arcs that represents probabilistic relationships 
between different variables [51–53]. These variables and the de
pendency relationships between them are represented by the nodes and 
the arcs, respectively. The directions of arcs connecting pairs of nodes 
represent the type of dependencies between the variables. Consider a 
graph G = (V, E) as a BN with a set of nodes (variables) V = {X1, X2, …… 
Xn} and a set of arcs (links) E as shown in Fig. 1. A link is directed from 
node Xi to Xj, indicates the states of Xj are dependent on the states of Xi. 
In this case, Xi is the parent of Xj, and Xj is the child of Xi. The set of all 
parents of Xi could be defined as par(Xi). Nodes that do not have any 
child are called the leaf node and do not have any parent are called root 
vertex. The BN is also known as a belief network. 

The BN uses Bayesian inference for probability computations. As BN 
aims to model conditional dependence between variables, the de
pendency relationships among variables are quantified by conditional 

Fig. 1. A general structure of a Bayesian Network with n nodes.  
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probability distributions, which can be obtained from conditional 
probability tables (CPT). The conditional probability distributions for Xi 
can be represented as P(Xi|par(Xi)). These probabilities can be found in 
different ways, such as direct measurement, learning from data, expert 
knowledge, and from the combination of prior knowledge and data 
[54–56]. According to the chain rule of probability, the conditional 
probability distributions associated with all the variables can be used to 
calculate the joint probability distribution of all the variables specified 
as, 

P(X1,X2⋯⋯⋯Xn) =
∏n

i=1
P(Xi|par(Xi)) (1)  

P(X1,X2⋯⋯⋯Xn) = P(X1|par(X1))P(X2|par(X2))⋯⋯P(Xn|par(Xn))

There are three basic steps to construct a BN model: Step 1 defining 
variables (nodes) with their corresponding states, Step 2 specifying 
variable dependencies (arcs), and Step 3 generate conditional proba
bility distribution table (CPT). The structure and standard parameters of 
the BN can be specified manually based on domain expert knowledge 
and in an automated manner by using a machine learning technique. 
The conditional probabilities of each state of the variables are calculated 
using Bayesian inference. For example, the probability of variable X5 
which is dependent on variable X3 in Fig. 1 can be obtained by the 
conditional probability between X5 with X3 as: 

P(X3|X5) =
P(X5|X3)P(X3)

P(X5)
(2) 

Bayesian inference derives the posterior probability, P(X3| X5) as a 
consequence from a prior probability P(X5) and a likelihood function P 
(X5| X3), where P(X5| X3) is the probability of X5 given X3, P(X3| X5) is 
the probability of observing X3 given X5. P(X3) and P(X5) are the 
probability of occurring for variable X3 and variable X5, respectively. 
Assuming variable X3 is an observable variable with two states true or 
false, the sum probability of P(X3=true) and P(X3=false) is equal to 1. If 
variable X5 is observed to be true, then the Eq (2) becomes P(X3| X5=true) 
and is updated with P(X5=true). 

As BN is capable of modeling relationships between variables in 
complex systems efficiently, it is being used in many real-world appli
cations, including forecasting [30,57], predictive analysis [26,58], risk 
management [59,60], and many other applications. This paper is mainly 

focused on employing BN models in probabilistic analysis in trans
portation and logistics research areas. 

3. Bayesian network-based congestion estimation approach 

Measuring traffic congestion is the first step towards a reliable traffic 
management system as it helps taking necessary steps in mitigating 
congestion in the least possible period. From the analysis of various 
currently available congestion measurement approaches, it was 
observed that these measures represent individual performance (speed, 
volume, and time) [33]. However, all these performances contribute to 
indicating congestion. That is why different measures are being used 
simultaneously to portray the real traffic condition. In this section, a 
Bayesian network-based approach is developed for estimating both 
recurring and nonrecurring congestion. One of the most significant ad
vantages of using a Bayesian network is that it can determine the 
probability of occurring different states of a target variable while 
considering the prior parameter values. Also, it can incorporate previous 
information to update the present standard parameters. Considering the 
potentialities of the Bayesian network, a probabilistic analysis of the 
congestion level estimation is proposed. The flow chart of the proposed 
framework for the BN-based congestion estimation approach is illus
trated in Fig. 2. 

This framework can be implemented for both recurring and nonre
curring congestion. For either of the type of congestion, the first step is 
to select the suitable congestion measures to find the combined esti
mation. The next step is to define the combined congestion state. The 

Fig. 2. Bayesian Network (BN) – based congestion estimation framework.  

Table 1 
Speed performance index with traffic state.  

Speed Performance 
Index 

Traffic State 
Level 

Description of Traffic State 

[0,25] Heavy 
Congestion 

Low average speed, poor road traffic 
state 

(25,50] Mild Congestion Lower average speed, road traffic state 
is weak 

(50,75] Smooth Higher the average speed, road traffic 
state is better 

(75,100] Very Smooth High average speed, road traffic state 
is good  
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most significant phase of the framework is to develop the Bayesian 
network (BN). Prior to a suitable BN can be developed, the relevant 
variables and the conditional relationships between the variables need 
to be specified. Depending on the structure of the BN, resulting in a CPT 
table can be obtained for one or more than one variables. After a BN 
model is finalized a variety of scenarios can be generated to perform 
qualitative and quantitative analysis. In this paper, assessing the 
developed BN for different traffic scenarios, the resulting congestion 
state with the probability of each state occuring can be quantified. 

3.1. Bayesian network for recurring congestion 

From the variety of different measurement approaches for recurring 
congestion, speed performance index (SPI), and level of services (Los) 
were selected to be included in the BN model. These two measures 
consider the most basic standard parameters, which are speed and vol
ume, that can represent the traffic condition in the most significant way. 
In general, for road traffic to be considered in the congestion state, the 
average traffic speed is significantly lower, and volume is higher 
compared to the normal traffic condition. The justification behind 
employing both SPI and LoS rather than just either one of them is that 
the combination of these measures is a better representation of traffic 
state since the root cause of congestion involves both speed and vehicle 
volume. Both speed and volume are crucial measures to determine the 

congestion state as using only one would not be sufficient for this pur
pose. Moreover, these measures have been used in different works of 
literature as well as in annual traffic reports. On the basis of adhering 
with the measurements employed in formal traffic reports, these two 
measures were selected and deemed to be sufficient to define various 
traffic states. But there is still no standard for determining the scope of 
parameter values for different traffic levels. 

a. Speed Performance Index (SPI): SPI is the ratio between average 
vehicle speed and the maximum permissible speed, as shown in Eq. (3) 
[34]. The value of SPI ranges from 0 to 100. The traffic state level can be 
classified with three threshold values (25, 50, and 75) and four levels, as 
shown in Table 1. 

SPI =
(
vavg/vmax

)
× 100 (3)  

where SPI denotes the speed performance index, vavg indicates the 
average travel speed, and vmax denotes the maximum permissible road 
speed. 

b. Level of Services (LoS): The LoS approach was introduced in the 
Highway Capacity Manual (HCM) [61]. LoS is a popular method in 
determining traffic states due to its simplicity. The volume-to-capacity 
ratio (V/C) is one of the methods used to estimate the LoS of a 
roadway. The scale intervals of the volume-to-capacity ratio (V/C) are 
shown in Table 2. The V/C ratio can be calculated by, 

V/C = Nv/ Nmax, (4)  

where Nv is the spatial mean volume, and Nmax denotes the maximum 
number of vehicles that a segment can contain as the capacity [62,63]. It 
can be further quantified as, 

Nmax = (Ls/ Lv) × Nl, (5)  

where Ls is the spatial segment length, Lv is the average vehicle length 
occupancy, and Nl is the number of lanes. Lv includes vehicle length and 
safety distance. In general, it is assumed that vehicle length is about 14 
ft. (approx. 4.27 m), and safety distance is about 15 ft. (approx. 4.57 m) 
[63].  

a. Define Combined Congestion State: To determine the recurring 
congestion state, V/C and SPI levels are combined, as shown in 
Table 3. For each level of a measure (V/C and SPI), a value is 
assigned in ascending order. The values assigned for six degrees of 
services (LoS): A, B, C, D, E, F based on the V/C ratio are 1, 2, 3, 4, 5, 
and 6, respectively. A value 1 indicates free flow, and 6 shows 
breakdown flow. Similarly, the values assigned to the SPI levels: very 
smooth, smooth, mild, and heavy are 1, 2, 3, and 4, respectively. To 
find the final congestion state measure, these values are added. The 

Table 2 
LoS classes based on the corresponding V/C ratio and operating conditions.  

LoS Class Traffic state and condition V/C ratio 

A Free flow 0–0.60 
B Stable flow with unaffected speed 0.61–0.70 
C Stable flow but speed is affected 0.71–0.80 
D High-density but the stable flow 0.81–0.90 
E Traffic volume near or at capacity level with low speed 0.91–1.00 
F Breakdown flow >1.00  

Table 3 
The new range for recurring congestion states.  

V/C SPI Congestion state 

LoS Value Level Value Level Value 

A (Free flow) 1 Very smooth 1 Smooth 1–4 
B 2 Smooth 2 Mild 5–7 
C 3 Mild 3 Heavy 8–10 
D 4 Heavy 4 – – 
E 5 – – – – 
F (Breakdown) 6 – – – –  

Table 4 
Variables and state definitions for the BN model for recurring congestion.  

Level 1: Attributes Level 2: Parameters Level 3: Congestion level 

Variables States Variables States Variables States 

Segment (Sg) G1 = Indiana to I-94 Expressway 
G2 = I-94 Expressway to Indiana 
G3 = Lawrence to Kennedy Expressway 
G4 = Kennedy Expressway to Lawrence 

Speed (Sp) Low 
Medium 
High 

SPI Heavy [0,25] 
Mild (25,50] 
Smooth (50,75] 
Very smooth (75,100] 

Direction (Dr) EB - Eastbound 
WB - Westbound 
NB - Northbound 
SB - Southbound 

Vehicle count (V) Low 
Medium 
High 

V/C A (0–0.60) 
B (0.61–0.70) 
C (0.71–0.80) 
D (0.81–0.90) 
E (0.91–1.00) 
F (>1.00) 

Day (D) Weekday (Mon – Fri) 
Weekend (Sat, Sun) 

– – Congestion state (C)- target variable Smooth 
Mild 
Heavy 

Time (T) AM Peak (6 – 9 am weekdays) 
PM Peak (4 – 7 pm weekdays) 
Off-Peak 

– – – –  
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new range for congestion states is defined as smooth (1–4), mild 
(5–7), and heavy (8–10). Table 3 shows a new range of congestion 
measures after combining both SPI and V/C for primary data pro
cessing purposes to obtain congestion values for the conditional 
probability table to build the initial BN model. 

3.1.1. Recurring congestion BN model 
The development of BN model for measuring recurring congestion 

involved nine variables selected as the nodes. These variables are 
segment, direction, day, time, speed, vehicle count, SPI, V/C, and 
congestion state. The states of these variables are described in Table 4. 
The “segment” node specifies the road segments that are considered for 
the analysis. In this paper, four road segments were taken into account, 
as given in Table 4. The “direction” node indicates the direction of a road 
segment, which includes eastbound, westbound, northbound, and 

southbound. “day” node considers two discrete states weekdays (Mon – 
Fri) and weekends (Sat, Sun). The “time” node divides the time of the 
day into three states AM peak, PM peak, and off-peak. Both speed and 
volume of the vehicles are discretized into low, medium, and high ac

cording to the maximum allowable speed level and the road segment 
capacity. The “speed performance index (SPI)” node indicates four 
different traffic state levels (heavy, mild, smooth, very smooth). Simi
larly, the “V/C” node has six levels of service (A, B, C, D, E, F). Finally, 
the combined congestion state is discretized into three levels (low, 
medium, high) in the “congestion state” node. All these variables are 

divided into three levels considering the variable relationships. Level 1: 
segment, direction, day, time, Level 2: speed, vehicle count, and Level 3: 
SPI, V/C, congestion state. The congestion state is the target variable. 

Once the states of the variable are specified, the next step is to 
determine the conditional relationships between variables. In this paper, 
the structure of the BN model was manually defined based on experts’ 
domain knowledge. The proposed BN model for recurring congestion is 
shown in Fig. 3. The variables in Level 2: speed, vehicle count, and Level 
3: SPI, V/C, congestion state is conditionally dependent on the variables 
in Level 1: segment, direction, day, time. There is also a conditional 
dependency between Level 2 and Level 3 variables. Besides, the target 
variable congestion state depends on the V/C and SPI states. The con
nections (links/lines) between the nodes represent the conditional de
pendency between the variables. According to the proposed BN model in 
Fig. 3, the joint probability distribution for all the variables in the 
network could be written as,   

The probability of the congestion state being smooth could be 
calculated by,   

Eq. (7) could be similarly updated for both C = mild, and C = heavy 
congestion state. 

P(Sg,Dr,D,T,Sp,V, SPI,V/C,C) = P(Sg).P(Dr).P(D).P(T).P(Sp|Sg,Dr,D,T).P(V|Sg,Dr,D,T)⋯.P(SPI|Sg,Dr,D,T,Sp).P(V/C|Sg,Dr,D,T,V).

P(C|Sg,Dr,D,T, Sp,V,SPI,V/C) (6)   

P[Sg,Dr,D,T,Sp,V,SPI,V/C,C=smooth]

=
∑

Sg,Dr,T,D,Sp,V,SPI,VC

P[Sg,Dr,T,D,Sp,V,SPI,
V
C
,C=smooth]

=
∑

Sg,Dr,T,D,Sp,V ,SPI,VC

⎛

⎜
⎜
⎝

P
[

C=smooth|Sg,Dr,T,D,Sp,V,SPI,
V
C

]

P[Sg].P[Dr].P[T]⋯

.P[D].P[Sp].P[V].P[SPI].P[V/C]

⎞

⎟
⎟
⎠

(7)   

Fig. 3. Graph representation of the proposed BN model for recurring congestion.  
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3.1.2. Data analysis 
The proposed BN model was implemented with an open-source 

dataset from the Chicago Traffic Tracker [64]. This dataset contains 
the historical estimation of congestion for over 1000 traffic segments, 
starting from March 2018. Traffic congestion on Chicago’s arterial 
streets (non-freeway streets) in realtime was estimated by the 

continuous monitoring and analysis of the received GPS (Global Posi
tioning System) traces from Chicago Transit Authority (CTA) buses. The 
variables selected from this dataset for analysis are date, time, segment, 
direction, speed, bus count, message count, segment length. The vehicle 
count was assumed from the bus count, message count, and the calcu
lated road capacity. By using these variables, SPI and V/C were 

Fig. 4. Partial CPT for the recurring congestion BN model providing different combinations of variables’ states.  

Fig. 5. Graph representation of the proposed recurring congestion BN model when there was no observation made.  
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calculated using Eqs. (3), (4), and (5). In the end, the modified dataset 
contains the date, time, segment, direction, segment length, speed, 
vehicle count, SPI, and V/C was used for further analysis. Each of the 
variable values was taken for every 10 min for seven consecutive days 
from March 14, 2018, to March 20, 2018. In this paper, four segments: 
G1 (Indiana to I-94 Expressway), G2 (I-94 Expressway to Indiana), G3 
(Lawrence to Kennedy Expressway), G4 (Kennedy Expressway to Law
rence), and four directions: EB (Eastbound), WB (Westbound), NB 
(Northbound), and SB (Southbound) were considered. Speed and V/C 
were discretized for each segment according to the maximum allowable 
speed and the segment capacity. For parameter learning and probabi
listic inference, Netica software was used. A part of the conditional 
probability table (CPT) is shown in Fig. 4. The full CPT table will be 
made available upon request. 

The proposed Bayesian network was implemented, and the proba
bility distribution was estimated based on the provided traffic data. The 
estimated probability results are shown in Fig. 5. The probability dis
tribution of segment, direction, day, and time of the current dataset 
provides the actual state of the given dataset. In Level 1, the probability 
distribution of a given variables x was calculated as, P(A = x) = (No. of 
events A = x)/No. of all possible events from the dataset employed. 
Without any observation made and based on the data employed, in Level 
2, the probabilities of the average speed are low, medium, and high are 
45.1%, 30.4%, and 24.5%, respectively. The states of vehicle count 
being low, medium, and high are 38.2%, 31.7%, and 30.1%, 
respectively. 

In Level 3, the V/C levels, A (free flow), B, C, D, E, F (breakdown) 
indicates traffic states from the free flow to the breakdown state 
occurred with the probability of 22.4%, 15.7%, 15.8%, 15.9%, 16.0%, 
and 14.2%. The expectations of very smooth, smooth, mild, and heavy 
SPI levels are 30.4%, 26.3%, 24.9%, and 18.5%. The found probabilities 
of final congestion states are 37.5% smooth, 33.4% mild, and 29.0% 
heavy. This indicates that in the current situation, the congestion state is 
most likely to be smooth, with a probability of 37.5%. This probability is 
the highest probability among the three congestion states. The highest 
likelihood for a smooth congestion state resulted from its child nodes of 
a very smooth SPI level and A level V/C. 

For evaluating the proposed BN model, ten scenarios were generated 
by changing the probabilities of different variables’ states to 100%. The 
scenario descriptions, along with the changes in expectations of states of 
V/C, SPI, and the final congestion states, could be found in Table 5, 
Table 6, and Table 7. 

Scenarios 1 – 4 were generated for comparing the congestion states 
during weekdays and weekends. Scenario 1 was observed for setting 
both weekends and off-peak to be true (100%), which shows level A 
(free flow) of V/C with 23.7% and a very smooth level of SPI with 
29.4%, which comprises to 38.7% probability for a smooth congestion 
state. Although the states of V/C, SPI, and the congestion states remain 
the same in Scenarios 2, 3, and 4, the probabilities vary. From the 
probability distribution, it was observed that the smooth congestion 
state is more likely to happen during the weekend and off-peak hours of 
weekdays. 

Scenarios 5, 6, and 7 were generated for observing low speed and 

varying vehicle count. Scenario 5 (low speed, high volume) indicates a 
21.9% probability of V/C level E (Traffic volume near or at capacity 
level with low speed), 32.1% very smooth SPI, and 39.6% mild 
congestion state. However, a probability of 35.3% of the heavy 
congestion state was also observed for this combination. The BN model 
for Scenario 5 could be found in Fig. 6. The states in Scenario 5 were 
changed in Scenario 6 (low speed, medium-volume) as of 23.7% V/C 
level C (Stable flow but speed is affected) and 29.3% smooth SPI 
comprising 41.6% mild congestion state. In Scenario 7 (low speed, low 
volume), V/C of level A (free flow) with 35.5% and SPI with 35.5% 
smooth result 33.4% mild congestion state. These three scenarios 
demonstrate that low speed with high and medium volume is associated 
with a mild congestion state. 

The rest three Scenarios 8, 9, and 10 were generated for observing 
high speed and varying vehicle count. For low vehicle count, V/C level A 
(free flow) with 42.2% and SPI with 43.8% very smooth, and 57.6% 
smooth congestion state was observed. For medium vehicle count, V/C 
level C (Stable flow but speed is affected) with 25.6% and SPI with 
37.4% very smooth, and 38.1% smooth congestion state was observed. 
Finally, for high vehicle count, level E (Traffic volume near or at ca
pacity level with low speed) with 26.0% and SPI with 33.7% very 
smooth, and 33.4% smooth congestion state was observed. These three 
scenarios demonstrate that high speed with low and medium volume is 
most likely representing a smooth congestion state. 

3.2. Bayesian network for nonrecurring congestion 

Nonrecurring congestions are an unusual kind of congestion that 
generally occurs due to unpredictable events. The most common activ
ities that could cause nonrecurring congestion are traffic incidents or 
accidents, work zones, extreme weather, and special events [5,7]. Due to 
these events, new congestion during the off-peak periods could be 
initiated, and the duration of recurring congestion could be increased. 
Measuring nonrecurring congestion has always been challenging as this 
kind of congestion does not align with the usual circumstances of 
recurring congestion. The current congestion measures cannot consider 
the uncertainties of nonrecurring congestion while measuring the 
congestion level, so it fails to present the real condition. 

In this sub-section, a BN-based approach for the probabilistic esti
mation of nonrecurring congestion is proposed. The BN-based method is 
capable of capturing the conditionality between different states of the 
variables, whether the data points follow a trend or not, and provides a 
probabilistic estimation of the congestion state. Unlike the recurring 

Table 5 
Probability distribution in Scenario 1–4 of recurring congestion BN model.  

Scenario Description V/C SPI Congestion 
state 

1 Weekend, off 
peak 

A 
(23.7%) 

Very smooth 
(29.4%) 

Smooth 
(38.7%) 

2 Weekday, off- 
peak 

A 
(23.1%) 

Very smooth 
(31.2%) 

Smooth 
(38.3%) 

3 Weekday, am 
peak 

A 
(20.6%) 

Very smooth 
(34.6%) 

Smooth 
(36.1%) 

4 Weekday, pm 
peak 

A 
(22.7%) 

Very smooth 
(29.2%) 

Smooth 
(37.4%)  

Table 6 
Probability distribution in Scenario 5–7 of recurring congestion BN model.  

Scenario Description V/C SPI Congestion 
state 

5 Low speed, high 
volume 

E 
(21.9%) 

Mild (32.1%) Mild (39.6%) 

6 Low speed, medium 
volume 

C 
(23.7%) 

Smooth 
(29.3%) 

Mild (41.6%) 

7 Low speed, low 
volume 

A 
(35.5%) 

Smooth 
(35.5%) 

Mild (33.4%)  

Table 7 
Probability distribution in Scenario 5–7 of recurring congestion BN model.  

Scenario Description V/C SPI Congestion 
state 

8 High speed, low 
volume 

A 
(42.2%) 

Very smooth 
(43.8%) 

Smooth 
(57.6%) 

9 High speed, medium 
volume 

C 
(25.6%) 

Very smooth 
(37.4%) 

Smooth 
(38.1%) 

10 High speed, high 
volume 

E 
(26.0%) 

Very smooth 
(33.7%) 

Mild (33.4%)  
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congestion state as defined in Section 3.1, the nonrecurring congestion 
states can be identified with the standard parameters speed, vehicle 
count, and travel time, as shown in Table 8. This is because the 
commonly used measures: SPI and V/C do not apply or intend to be used 
to measure nonrecurring congestion because of the unpredictable trend 
and root causes of nonrecurring congestion. SPI and V/C measures used 
in recurring congestion, capture the variation of speed and volume in 

normal conditions only. Nonrecurring congestion has unusual condition 
properties that do not follow the usual trend of speed and volume. SPI 
and V/C fail to consider this uncertainty in their measures. That is why, 
instead of SPI and V/C in the recurring congestion, the standard pa
rameters speed, vehicle count, and travel time were adopted in esti
mating the nonrecurring congestion state. 

To define the ranges of final congestion state, speed, vehicle counts, 
and travel time are divided into three levels as low, medium, and high. 
The three levels of speed are assigned value as low (3), medium (2), and 
high (1). A low level of speed indicates high congestion. The assigned 
values for speed were flipped for vehicle count and travel time because a 
higher level of vehicle count and travel time are most likely to indicate 
high congestion. The three levels of vehicle count and travel time are 
low (1), medium (2), and high (3). The assigned values for speed, vehicle 
count, and travel time were added to define the range for nonrecurring 
congestion states. The final nonrecurring congestion states are defined 
as low (1–3), mild (4–6), heavy (7–9), as shown in Table 8. 

3.2.1. Nonrecurring congestion BN model 
The BN model for measuring nonrecurring congestion was developed 

by considering 14 variables selected as nodes. These variables were 
divided into three levels considering the variable relationships; Level 1: 
weather, disaster, incidents, special events, work zones, Level 2: weather 
forecasts, population density, event intensity, action plan, panic, and 
Level 3: speed, vehicle count, travel time, and congestion state. The 
congestion state is the target variable. The states of these variables are 
described in Table 9. 

The first five nodes in Level 1, “Extreme weather,” “Disaster,” 

Fig. 6. Variation of probability distributions of variables given that low speed and high vehicle count was observed (Scenario 5).  

Table 8 
The combined nonrecurring congestion state.  

Speed Vehicle Count Travel Time Congestion 

Level Value Level Value Level Value Level Value 

Low (high congestion) 3 Low 1 Low 1 Low 1–3 
Medium 2 Medium 2 Medium 2 Medium 4–6 
High 1 High (high congestion) 3 High (high congestion) 3 High 7–9  

Table 9 
Variables and state definitions for the BN model for nonrecurring congestion.  

Level 1: Events Level 2: Circumstances Level 3: Parameters and 
target variables 

Variables States Variables States Variables States 

Extreme 
weather 
(W) 

Yes 
No 

Weather 
forecast (Wf) 

Rain 
Snow 
Fog 
Sunny 
Cloud 

Speed (Sp) Low 
Medium 
High 

Disaster 
(Ds) 

Yes 
No 

Population 
density (Pd) 

Low 
Medium 
High 

Vehicle count 
(V) 

Low 
Medium 
High 

Incidents 
(I) 

Yes 
No 

Event 
intensity (Ei) 

Low 
Medium 
High 

Travel time (Tt) Low 
Medium 
High 

Special 
events 
(S) 

Yes 
No 

Action plan 
(AP) 

Yes 
No 

Congestion 
state (target 
variable) (C) 

Low 
Medium 
High 

Work zones 
(Wz) 

Yes 
No 

Panic (P) Yes 
No 

– –  
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“Incidents,” “Special events,” “Work zones” indicate the possible events 
that could cause nonrecurring congestion. For the general BN model and 
to make it flexible to be modified to an event-specific model, these five 
nodes’ states are defined as binary observations, yes or no. In Level 2, 
several variables that may directly affect the traffic condition, as well as 
the decision-makers’ action to control traffic congestion, such as 
weather forecast, population density, and event intensity, were taken 
into consideration. The “Weather forecast” node was set to have five 

states: rain, snow, fog, sunny, and cloud. Both the “Population” and 
“Event intensity” nodes were considered to have low, medium, or high 
state. Another variable that could also affect the traffic condition is 
whether the passengers are in a panic state or not as it could jeopardize 
the traffic movement, for example, causing a road accident due to 
driving recklessly. The “Panic” node has a binary state, yes or no. The 
next three nodes in Level 3 are the standard congestion parameters: 
“Speed,” “Vehicle count,” and “Travel time.” The states of these nodes 

can be defined as a low, medium, and high, which respectively results in 
a low, medium, or high nonrecurring “Congestion state.” 

As the states of the nodes are defined, the conditional relationships 
between nodes were specified. The structure of the BN model for 
nonrecurring congestion was also manually defined similarly to the 
recurring congestion BN model depending on experts’ domain knowl
edge. The proposed BN model is shown in Fig. 7. The Level 1 variables 
(extreme weather, disaster, incidents, special events, work zones) affect 
the event intensity node in Level 2 and all the variables in Level 3. The 

variables in Level 2 weather forecast, population density, event in
tensity, action plan, panic affect the states of the variables in Level 3. 
Weather forecast and population density in Level 2 affects the action 
plan within the level as well. The target variable congestion state de
pends on the other Level 3 variables speed, vehicle count, and travel 
time. The joint probability distribution of all the variables following the 
proposed BN model in Fig. 7 can be written as,   

The probability of the congestion state being low could be calculated 
by, 

P[W,D, I,S,Wz,Wf, Pd,Ei,AP,P, Sp,V,Tt,C = low]

=
∑

W,D,I,S,Wz,Wf ,Pd,Ei,AP,P,Sp,V,Tt
P
[

W,D, I, S,Wz,Wf ,Pd,Ei,AP,⋯
P, Sp,V, Tt,C = low

]
(9)   

Eq. (7) could be similarly updated for both C = medium and C = high 
congestion state. 

3.2.1.1. Data analysis. A realtime traffic dataset from the Florida 
Department of Transportation (FDOT) [65] was employed as the his
torical data to the proposed BN model for nonrecurring congestion. This 
dataset contains speed and vehicle count hourly data from September 

Fig. 7. Graph representation of the proposed BN model for nonrecurring congestion.  

=
∑

W,D,I,S,Wz,Wf ,Pd,Ei,AP,P,Sp,V,Tt

(

P[C = low|W,D, I,S,Wz,Wf, Pd,Ei,AP,P, Sp,V,Tt] .P[W].P[D]⋯.P[I].P[S].P[Wz].P[Pd].P[Ei].P[Ap].P[P].P[Sp].P[V ].P[Tt]
)

P(W,D,I,S,Wz,Wf,Pd,Ei,AP,P,Sp,V,Tt,C)=P(W).P(D).P(I).P(S).P(Wz).P(Wf).P(P).P(AP).P(Pd).

P(Ei|W,D,I,S,Wz).P(AP|Wf,Pd).P(SP|W,D,I,S,Wz,Pd,Ei,AP,P).P(V|W,D,I,S,Wz,Pd,Ei,AP,P).

(Tt|W,D,I,S,Wz,Pd,Ei,AP,P).P(C|W,D,I,S,Wz,Wf,Pd,Ei,AP,P,Sp,V,Tt) (8)   
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15, 2017, to September 17, 2017, around US I-75 [65]. This dataset was 
selected because, during the time Hurricane Irma occurred, nonrecur
ring traffic congestion occurred. As it was a natural disaster, the state of 
disaster was set to yes, and the other Level 1 variable states are set to no. 
The states of the variables of Level 2 event intensity, panic, weather 
forecast, action plan, and population density were assumed, and the 
dataset was preprocessed accordingly. The travel time was generated 
and discretized along with speed and vehicle count using the speed data. 
The nonrecurring congestion states were found by using the defined 
range in Table 8, and the Netica software was used for parameter 
learning and probabilistic inference. A part of the conditional proba
bility table (CPT) is shown in Fig. 8. 

The probability distribution was estimated using the dataset, as 
shown in Fig. 9. At Level 1, the probability of occurring disaster is 
99.8%. The likelihood of being the event intensity as low, medium, or 
high is 37.9%, 32.2%, and 29.9%, respectively. 

At Level 2, the probability that the passengers panicked is 71.1%. 
This higher probability indicates that passengers seemed to panic during 
any disaster easily. The chance of the forecasted weather to rain, snow, 
fog, sunny, and cloud happened with a probability 56.2%, 0.20%, 
0.20%, 15.2%, and 28.1%, respectively. Before the disaster occurs, ex
perts might take congestion preventive actions considering the weather 
forecast. The likelihood of taking the action plan was assumed to be 
52.2%. Another critical factor that affects the decision-makers’ decision 
as well as the traffic condition is the population density. It could have 
either of the levels of a low, medium, or high with a probability of 
24.9%, 33.2%, and 41.9%. 

At Level 3, the probability of the speed level being low is 40.7%, 
medium is 29.8%, and high with the possibility of 29.5%. The likelihood 
that the vehicle count is low, medium, and high is 27.8%, 32.3%, and 

39.9%, respectively. Similarly, the probability of the travel time being 
low is 22.9%, medium is 39.7%, and high is 37.4%. Combining the states 
of speed, vehicle count, and travel time, the probability of the conges
tion state being low, medium, and high is 28.9%, 34.2%, and 36.9%. 
Among all three states, a high level of congestion stands out. 

From the implemented nonrecurring congestion BN model, ten sce
narios were generated by changing the states of the variables, as shown 
in Table 10 (Scenario 1–2), Table 11(Scenario 3–4), and Table 12 
(Scenario 5–6). Scenario 1 (high intensity, high density) and Scenario 2 
(low intensity, low density) were generated for varying event intensity 
and population density. Scenario 1 observed a medium congestion state 
with a 38.5% probability, and Scenario 2 estimated a low congestion 
state with 56.4% probability. These two scenarios indicate that both 
event intensity and population density may induce medium nonrecur
ring traffic congestion. 

Scenario 3 and 4 were generated for varying event intensity and 
panic states. In Scenario 3 (high intensity, panicked), a high congestion 
state with a probability of 45.0% is observed. And in Scenario 4 (low 
intensity, not panicked), a medium congestion state with an expectation 

Fig. 9. Graph representation of the proposed nonrecurring congestion BN model with some observation made in Level 1.  

Fig. 8. Partial conditional probability table (CPT) for nonrecurring congestion BN model providing different combinations of variables’ states.  

Table 10 
Probability distribution in Scenario 1 and Scenario 2 of nonrecurring congestion 
BN model.  

Scenario Description Speed Vehicle 
Count 

Travel 
Time 

Congestion 
state 

1 High 
intensity, high 
density 

Low 
(41.0%) 

High 
(49.5%) 

Medium 
(39.4%) 

Medium 
(38.5%) 

2 Low intensity, 
low density 

High 
(71.1%) 

Low 
(67.8%) 

Low 
(45.1%) 

Low (56.4%)  
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of 49.2% is observed. The effects of passenger behavior during a disaster 
on traffic congestion can be seen from these scenarios. If the passengers 
panic easily when the disaster intensity is high, this could result in a high 
congestion state. 

Scenario 5 and 6 were generated for varying action plan states with 
rain forecast and high population density to show the effect of taking the 
action plan. In Scenario 5 (rain forecast, the action is taken, high den
sity) generated a medium congestion state with 40.1% probability, and 
Scenario 6 (rain forecast, action not taken, high density) predicted a 
high congestion state with 40.8% probability. These scenarios demon
strate if the weather forecast is accurate, and the proper action plan is 
implemented, the congestion could be reduced during a high event 
intensity. 

Scenario 7 (low speed, high vehicle count, high travel time), Scenario 
8 (high speed, low vehicle count, low travel time), and Scenario 9 
(medium-speed, medium vehicle count, medium-travel time) were 
generated for varying state combinations of speed, vehicle count, and 
travel time as shown in Table 13. These three scenarios predicted a 
congestion state of high with 84.5%, low with 74.6%, and medium with 
64.1% probability occurrence, respectively. The probability distribution 
of Scenario 7 is shown in Fig. 10. These three scenarios demonstrate the 
effects of different combinations of the states of speed, vehicle count, 
and travel time to nonrecurring congestion state. A high congestion state 
is most likely to occur for low speed, high vehicle count, and high travel 
time, as expected. 

Finally, Scenario 10 is observed for no disaster, and no other events 
occurred. In this scenario, the equal probability distribution (33.3%) of 
all the states of the Level 3 variables is observed. This indicates that if no 
such unusual event occurs, the scenario coincides with a general 
circumstance when traffic congestion could be in any state. 

4. Discussion 

Traffic congestion is such a universal urban issue that is under con
stant observation and control of the transportation departments. 
Transportation experts develop annual reports each year that include 
the variation of congestion measures over the year. Not only the DOTs, 
but researchers have also been using a variety of measures for estimating 
congestion as the first step of monitoring traffic congestion. Because of 
the low computational complexity and data availability, these measures 
are applied broadly. However, these measures are parameter specific 
and do not consider the impacts of various parameter states on the 
congestion states. A BN-based approach was proposed in this paper to 
overcome these limitations of the current procedures. The proposed 
method provides a probabilistic estimation of traffic congestion, which 

Fig. 10. Variation of probability distributions of variables given that low speed, high vehicle count, and high travel time was observed (Scenario 7).  

Table 11 
Probability distribution in Scenario 3 and Scenario 4 of nonrecurring congestion 
BN model.  

Scenario Description Speed Vehicle 
Count 

Travel 
Time 

Congestion 
state 

3 High 
intensity, 
panicked 

Low 
(56.6%) 

High 
(56.9%) 

High 
(49.7%) 

High 
(45.0%) 

4 Low 
intensity, not 
panicked 

Medium 
(54.9%) 

Medium 
(43.8%) 

Medium 
(57.7%) 

Medium 
(49.2%)  

Table 12 
Probability distribution in Scenario 5 and Scenario 6 of nonrecurring congestion 
BN model.  

Scenario Description Speed Vehicle 
Count 

Travel 
Time 

Congestion 
state 

5 Rain forecast, 
action taken, 
high density 

Medium 
(44.1%) 

Medium 
(41.6%) 

Medium 
(45.9%) 

Medium 
(40.1%) 

6 Rain forecast, 
action not 
taken, high 
density 

Low 
(42.8%) 

High 
(44.9%) 

Medium 
(62.1%) 

High 
(40.8%)  

Table 13 
Probability distribution in Scenario 7–10 of nonrecurring congestion BN model.  

Scenario Description Speed Vehicle 
Count 

Travel 
Time 

Congestion 
state 

7 Low speed, 
high vehicle 
count, high 
travel time 

Low 
(100%) 

High 
(100%) 

High 
(100%) 

High 
(84.5%) 

8 High speed, 
low vehicle 
count, low 
travel time 

High 
(100%) 

Low 
(100%) 

Low 
(100%) 

Low 
(74.6%) 

9 Medium speed, 
medium 
vehicle count, 
medium-travel 
time 

Medium 
(100%) 

Medium 
(100%) 

Medium 
(100%) 

Medium 
(64.1%) 

10 No disaster Equal 
(33.3%) 

Equal 
(33.3%) 

Equal 
(33.3%) 

Equal 
(33.3%)  
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is a new attempt in this field of study. 
One of the most significant advantages of BN is that it can graphically 

represent the relationships among the variables involved in a circum
stance. By using the nodes and arcs, the conditional dependencies be
tween the variables could be easily presented and interpreted. 
Measuring these dependencies can be done by using conditional prob
abilities. In this paper, two BN models for recurring and nonrecurring 
congestion were developed and demonstrated in Sections 3.1.1 and 
3.2.1. These BN models were developed by considering the variables 
that may trigger a specific type of traffic obstruction. Although the 
number of variables differs in both models, the BN approach is able to 
estimate the target variable states without any obstacle. Because BN 
considers all the variables present in the network and there is no limit to 
the number of variables. From the BN models, the conditional de
pendencies among these variables are easily comprehensible. Moreover, 
the BN approach is capable of generating a variety of scenarios by 
changing the variable states. This attribute helps to view possible 
changes in an assessment that may aid in the decision-making process. 

In this paper, ten scenarios were generated for each of the two pro
posed BN models. These scenarios indicate how the states of the prior 
variables can affect the overall congestion state. Evaluating different 
scenarios through BN is a straightforward and non-time-consuming 
approach, which makes the BN approach an efficient decision-making 
tool for users. Although only ten scenarios were generated from each 
of the models in this paper, more scenarios can be generated depending 
on the BN models, decision-makers’ requirements, and the purpose of 
the assessment. There is no requirement of a specific amount of data 
points to develop a BN model. The dataset that was used for recurring 
congestion contains data points every 10 min, while the dataset that was 
used for nonrecurring congestion contains hourly data points. However, 
both models can be used to estimate congestion with varying data 
points. 

One of the aims of the proposed approach was to consider different 
standard parameters to evaluate the probable congestion level. In the 
recurring model, V/C and SPI were combined. On the other hand, 
standard parameters: speed, vehicle count, and travel time were com
bined to measure the overall nonrecurring congestion state. The most 
important advantage of using BN for estimating the congestion level is 
that it considers the probabilities of occurring different variable states 
and determines the congestion states in a probabilistic manner. This 
property makes the proposed approach applicable to measure both 
recurring and nonrecurring congestion. Further, this attribute of the 
proposed method makes it robust and unique compared to the existing 
approaches in providing a combined view of speed and vehicle count. 

Although the proposed approach offers considerable benefits, there 
are certain limitations as well. While implementing the BN model, sig
nificant data processing may require an extensive amount of time and 
effort because the raw data needs to be discretized and modified in the 
form of states for each variable. In addition, traffic congestion is a dy
namic phenomenon, as it could change with time as well as space. 
However, the proposed static BN does not really consider the spatial and 
temporal aspects of the analysis but purely based on historical data. 
Thus, in the future, the spatial–temporal traffic propagation throughout 
a transportation network will be investigated by implementing a dy
namic BN for estimating traffic congestion. The spatial–temporal traffic 
propagation indicates the change of traffic state with time and spreading 
of congestion hotspots in the traffic network. Dynamic BN may be a good 
candidate as it can relate variables in the BN to each other at different 
time steps with the temporal arcs [56]. Moreover, the predictive analysis 
for a resilient smart traffic management system [62] is another potential 
future research direction. Although predictive analysis for recurring 
congestion has been commonly addressed over the years, predicting and 
detecting nonrecurring congestion requires more attention. For future 
research, more effort will be allocated towards exploring the root causes 
and possible solutions for nonrecurring congestions. 

5. Conclusion 

Despite constant monitoring and investments in transportation sys
tems, traffic congestion remains in society and still increasing with the 
growing population and infrastructures. Measuring the congestion level 
provides a view of the traffic state as well as helps to ensure a robust 
traffic management system. Although a variety of congestion measure
ment approaches exist, they are still lacking in considering all the traffic 
standard parameters and applicability. Thus, a BN-based approach is 
proposed in this paper to overcome the limitations of the current 
methods. Two BN models for recurring and nonrecurring congestion 
were developed and implemented using two different datasets due to the 
nature of traffic congestion behavior. A realtime traffic tracker dataset 
for recurring congestion and a traffic monitoring dataset for nonrecur
ring congestion was implemented in the proposed BN models. Ten 
sensitivity analysis scenarios were generated and analyzed for each 
recurring and nonrecurring congestion to ensure the effectiveness of the 
proposed method. The proposed BN approach is a versatile approach 
that is able to perform qualitative and quantitative analysis. For quali
tative analysis, the proposed BN model is able to show the cause and 
effect relationship between two or more dependent variables. In addi
tion, for quantitative analysis, BN model is able to quantify the likeli
hood probability of an event happening based on its prior contributing 
factors. Overall, the proposed BN-based method is beneficial in 
providing a comprehensive vision of the states of speed and vehicle 
count with a probabilistic estimation of the congestion state. 
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