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Abstract

Situation awareness and recognition of traffic maneuvers are key elements
of advanced driver assistance and autonomous driving systems. This master
thesis outlines the challenge of situation awareness with early and accurate
recognition of traffic maneuvers. The thesis is a part of the EU-Research-
Project AMIDST (Analysis of Massive Data STreams) [7], founded by the
European Commission.

In particular, we investigate three different Bayesian Network models: the
Static Bayesian Network, the Dynamic Bayesian Network and the Naive
Bayesian Network, with regard to the sequential classification problem that
the lane change and lane follow maneuvers can be correctly classified during
the drive. On the other hand, we predict the situation features based on
the motion trend in order to recognize the lane change maneuvers at an
early stage such that the vehicle control system has enough time to perform
necessary actions.

For the improvement of each model, we utilize supervised learning algo-
rithms to determine the network parameters. By analyzing the situation
features given in the collected data from the real highway traffic, we develop
a suitable labeling concept to match the learning algorithms. Given the
labeled ground-truth data set, we implement Expectation Maximization algo-
rithm to learn the network parameters of the knowledge-based static model.
We implement linear and logistic regression to predict the dynamic trend
such that the network propagation is influenced in favor of the time gain.
Furthermore, we extend the static model to a Dynamic Bayesian Network by
adding temporal clones which represent certain variables at an earlier time
point. The relationship between successive time steps are learned by use of
the Adaptation approach. The resulted knowledge-based network models
are compared to the Naive Bayesian Network which is a pure data-driven
model.

The developed models are transferred to classifiers in the C-framework and
deployed on the Linux platform for off-line evaluation as well as on the
automotive platform of the experimental vehicle for on-line testing. Using
the optimized and extended knowledge-based models, over 90% of the traffic
maneuvers can be correctly recognized at an early stage, i.e. 1.1-1.5 seconds
before the considered vehicle crosses the lane marking.
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1 Introduction

1.1 Motivation

Situation awareness and prevision are the key elements of modern intelligent
driving (according to [2]). Since more than 30 years automotive manufacturer
consistently continues the development and improvement of driver assis-
tance systems. Based on the idea that the best protection against accidents
is to recognize and avoid them before they can occur, a series of assistance
systems helping the driver to stabilize the vehicle in critical situations, such
as the Anti-lock Braking System (ABS), Traction Control System (TCS) and
the Electronic Stability Control (ESC), become the standard applications
of the vehicles nowadays. The trend is further reinforced by the rapid
progress in the microcomputer industry and by the use of environment
sensor systems. The advanced driver assistance systems (ADAS) today are
developed not only to improve the active safety, but also the driving comfort
and the operational efficiency. Adaptive Cruise Control (ACC), for example,
automatically ensures a safe distance from the object vehicle in the front by
slowing down, if necessary, and accelerating, if the traffic situation permits.
Lane Departure Warning, for example, warns the driver of unintentional
lane changes, if the system detects that the own vehicle is drifting over
the lane marking. For the future, the OEM manufacturers focus on the
next development stage: the autonomous driving. Daimler AG and Bosch
GmbH for example, announced a partnership this year (2017) in order to
accelerate the development of self-driving cars. They aim for the target
that fully-automated cars can be delivered "by the beginning of the next
decade" [21].

Compared to the ADAS, a full autonomous driving system should be able
to take over all the driving tasks, from the analysis of the traffic situation
to the control of the lateral and longitudinal dynamics of the own vehicle,
without intervention of a driver. The idea of autonomous driving exists
since many years. However, there are several restrictions on the implemen-
tation. A crucial challenge is the adaptation of the cognitive abilities to the
autonomous systems. For concentrated humans e.g., it is a simple task to
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1 Introduction

recognize the maneuver intentions of surrounding vehicles by observing
their lateral and longitudinal motion trend. Similar to this human reasoning
process, a self-driving car has to perceive the relevant information about
the surroundings by environment sensing as well as accurately classify and
interpret the situation at an early stage such that the control systems have
enough time to perform the necessary actions. Finding and programming
the most capable transfer functions involve one of the essential tasks of the
modern autonomous engineering.

"Most tasks require a person or an automated system to reason: to take the
available information and reach conclusions, both about what might be true
in the world and about how to act" [15]. In this context, we investigate in this
thesis a concept for situation analysis in the highway traffic combining the
theory of Bayesian Networks and the methods of machine learning. Bayesian
Networks belong to the probabilistic graphical models, which are conven-
tional strategies representing the reasoning process. Based on the primary
work prior and during the EU-project "Solution for maneuver recognition
in highway traffic" (see [14], [24], [23] and the papers of the EU AMIDST
project [27], [26], [17]), we aim in this master thesis both for accuracy and
prevision in the developed models of maneuver recognition. The existing
knowledge-based models are optimized by learning the particular network
parameters. For this purpose, we use a labeled data set which is collected in
real highway traffic on different highways in Europe. Furthermore, we take
the trend analysis into account in order to obtain an even earlier recognition
of lane change based on the dynamic progress of the driving process. We
further investigate models which are solely constructed and adapted by the
given observations in the data set, for the purpose, that the development
process of the described conceptual approach for similar and also extended
problems is general and systematically valid and independent from complex
knowledge-based modeling. At the end, the most capable classifiers are
implemented both on the Linux platform off-line and on-line in the experi-
mental vehicle. The overall goal is the evaluation of the performance criteria:
accuracy and timegain.

1.2 Outline

The master thesis starts with the theory of Bayesian Networks including
the different modeling approaches and an investigation of suitable learning
algorithms in Chapter 2.
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1.2 Outline

For better understanding of the development and the usage of the network
models, we introduce the technical background in Chapter 3 including the
essential elements of modern intelligent vehicles as well as the essential
aspects of situation awareness.

The most important aspects of the development environment are described
in Chapter 4, which includes the computer systems in the experimental
vehicle, the software architecture, the relevant input data, the concept of data
labeling as well as the construction of the knowledge-based model. In this
context, we especially clarify our definition of lane change maneuver which
is an essential aspect for the formulation and the modeling of the problem
domain as well as for the data labeling.

In Chapter 5, a procedure of learning static models is presented. We use
multi-objective optimization to obtain an optimal initial (sigmoid) parameter
set. Based on the optimal initial parameterization, we implement the EM
algorithm to learn the conditional probability tables (CPTs) from to the
collected data set.

Furthermore, we utilize trend analysis based on linear and logistic regression
to improve the recognition timegain of the static models. The concept is
explained in Chapter 6.

In Chapter 7, we use the dynamic extension of particular fragment of the
static knowledge-based models, where temporal slices are added represent-
ing the different time steps. The relation between successive time steps is
given by the transitional conditional probability distributions (TCPD) which
is off-line adapted from the data set. The goal is primarily the smoothing of
incoming data based on the data history in order to improve the accuracy of
the developed classifiers.

In contrast to the model-based approaches we choose a data-based model,
i.e. the Naive Bayesian Network (NBN). In Chapter 8 we explain the concept
of constructing the Naive Bayesian Network.

In Chapter 9 the evaluation results of the best capable models are presented.
Due to the performance criteria: accuracy and timegain, we compare the
Static and Dynamic Bayesian Network models, where the parameters are
learned using EM- or Adaptation-algorithm, to the original model which is
constructed in the work of [14]. We find improvement in both the accuracy
and timegain. We investigate the performance of the knowledge-based mod-
els by the use of linear and logistic regression which improve the timegain
with decline in the accuracy. Furthermore, we evaluate the data-driven Naive
Bayesian Network model which has better timegain than the knowledge-
based models, but an unacceptable error rate in the recognition of FOLLOW
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1 Introduction

maneuvers.
In Chapter 10, we discuss two possible approaches for the transmission of
the output of the network models to the control systems. Both concepts are
based on the assessment of the situation criticality.

At the end, in Chapter 11, the work of this thesis is summarized according
to the obtained results. Additionally, possible improvements and future
development are discussed.
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2 Theoretical Basis

For basic understanding of this thesis, relevant theories of the Bayesian
Network including the Object-Oriented Bayesian Network, the Dynamic
Bayesian Network. We investigate the learning algorithms to estimate the
probability parameters (qualitative part) in the Bayesian Networks. The
relevant learning algorithms are explained. Furthermore, basic concepts for
the construction of the model structure (qualitative part) are described at the
end of this chapter.

2.1 Bayesian Network

2.1.1 Construction

A Bayesian Network (BN) is a probabilistic graphical model M = (G, P)
consisting of network structure G and probability functions P. Using both
graph theory and probability theory it provides an effective and well founded
framework for knowledge representation, prediction and reasoning under
uncertainty. More details about the principles of probabilistic graphical
models are given in the book [15]. In the following, the essential theories of
the Bayesian Networks is introduced. The description follows the content
of the books [15] and [12]. For better understanding, suitable examples and
figures are presented.

The network structure of BN G = (U, L) is a directed acyclic graph (DAG)
which does not allow feedback cycles. It consists of a set of nodes represent-
ing the (discrete or continuous) random variables I{ and a set of directed
edges (or links) £ which denote the conditional dependencies between the
variables.

Variables of a BN may represent observable quantities and features (evidence
node), hidden relationships (latent node), event or hypothesis. A discrete
variable contains a set of mutually exclusive states X which can be of
different types (e.g. Boolean, numbered, labeled). Continuous variables
are modeled using probability density function, e.g. Conditional Gaussian
Distribution. They can be discretized and treated as discrete variables with
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2 Theoretical Basis

certain value range. A BN containing both discrete and continuous variables
is called Hybrid Bayesian Network.

Variables are conditionally dependent if they are linked by a directed edge.
If there is for example a link from variable A; to variable Ay, then A is
the parent of Ay, and A, is referred to as the child of A;. The relation-
ship between A; and Aj is described by a conditional probability function
P(A3|Ay). It returns for each value of its inputs the conditional probability
distribution (CPD) as output. The CPD denotes the probabilities of the states
of the child A, dependent to the probability distributions given in parent A;.
If the A; has no other parent nodes, it is specified by the prior probability
distribution P(A;) representing the initial belief states of A; without any
influences.

2.1.2 Conditional Probability Table

The CPD for discrete variables is expressed by the conditional probability
table (CPT) which is the most frequently used conditional probability func-
tion for BN. CPT can be considered as parameter matrix. Each cell contains
a probability parameter representing a state of the child variable given a
specific configuration of the states of its parents. The number of cells can be
determined by multiplying the number 7 of states of the child node and the
number m of states of its parent nodes, i.e. dim(CPT) = n - m. If the variable
is continuous, the CPT contains a mean and a variance parameter for each
discrete parent node and a regression coefficient for each continuous parent
node [12].

The developed BN models in this thesis consist of sets of discrete hypothesis
and event variables. We use learning algorithm to determine the CPTs,
especially for the input hypothesis, in order to improve the performance of
the developed BN models.

2.1.3 Chain Rule

Given the local (conditional) probability distributions for each variable of a
BN over U = (Ajy, ..., An) the unique joint probabilty distribution represent-
ing the knowledge domain can be calculated using the Chain Rule [12]:

PU) = f{P(AApa(Af» , (2.1
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2.1 Bayesian Network

where pa(A;) are the parents of the variable A; in the BN structure G. The
computation of joint probability distribution is necessary step for further
calculations.

A simple example, which is also relevant for this thesis, is given in Figure 2.1,
where the output variable LE (denoting the lateral evidence) is conditionally
dependent to the observations given in the variables OLAT and VLAT
(denoting the relative distance and velocity to lane marking). Both parent
nodes OLAT and VLAT are conditionally independent. The output variable
LE is a Boolean variable with the states true and false. The variable OLAT
is modeled with the states near and far. The variable VLAT contains the
states to, straight and from denoting the direction of the vehicle in relation
to the lane marking. Furthermore, the prior probability distributions of the
parent nodes OLAT, VLAT and the CPT of the child node LE are given
in Figure 2.1. We use the Chain Rule (Equation (2.1)) to compute the joint
probability distribution:

P(OLAT, VLAT, LE) = P(OLAT) - P(VLAT) - P(LE|OLAT,VLAT) ,

where every probability parameter given in the CPT of the child node LE is
multiplied with the corresponding prior probabilities of the parent nodes.
The computation is shown in Table 2.1. The computed joint probability
distribution in Table 2.1 sums up to 1 (=100%).

P(OLAT) P(VLAT)
near 0.5 to 0.3

far 0.5 straight | 0.4

from 0.3
P(LE | OLATVLAT)
OLAT near far
VLAT to straight from to straight from
false o] 0.4 0.8 0.7 0.9 1
true 1 0.6 0.2 0.3 0.1 (o]

Figure 2.1: Conditional dependency between the information variables
OLAT,VLAT and the hypothesis variable LE

27



2 Theoretical Basis

Table 2.1: Computation of the unique joint probability distribution P(U) =

P(OLAT,VLAT,LE)
OLAT near
VLAT to straight from

false 05-03-0=0 | 05-04-04=008 | 05-03-0.8=0.12
true | 05-03-1=0.15| 05-04-06=0.12 | 0.5-0.3-0.2 =0.03

OLAT far

VLAT to straight from

false | 0.5-0.3-0.7=0.105 | 0.5-04-09=0.18 | 0.5-0.3-1=0.15
true | 0.5-0.3-0.3=0.045 | 05-04-01=0.02 | 05-03-0=0

2.1.4 Marginalization

The probability distribution P(A;) of a variable A; is computed by summing
out over irrelevant variables. This step is called marginalization (according

to [12]) which is given by

P(A) =) [IP(Ailpa(A)) . (2.2)
U\|Ai| Ai
near 0.5 to 0.3
far 0.5 straight 0.4
from 0.3
LE
false 0.635
true 0.365

Figure 2.2: Probability distribution without inserting evidence

In the example given in Figure 2.1 we sum up the probability parameters in
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2.1 Bayesian Network

the line denoting the states true and false of the variable LE:

P(LE = false) = 0+ 0.08 4+ 0.12 + 0.105 + 0.18 4+ 0.15 = 0.635,
P(LE = true) = 0+ 0.08 + 0.12 4 0.105 + 0.18 + 0.15 = 0.365 ,

to compute the initial CPD (as shown in Figure 2.2) in the case that no
evidence is given to the network.

2.1.5 Inserting Evidence

Assume a discrete hypothesis variable A (e.g. distance) with n states and
the corresponding prior probability distribution P(A) = (xy,...,x;). The
evidence e (e.g. sensor measurement) is given as observation that A is only
in the state i which is a so called hard evidence. The probability distribution
is given as P(Ae) = (0,...,x;,...,0) which is the result of multiplying the
prior probability distribution of P(A) by (0,...1,...,0). In the case of an
uncertain observation (e.g. uncertain measurement) we use the likelihood
(soft) evidence, e.g. (0,0.2,0.3,0.5,0,...) and we do the same multiplication.
The prior probability distribution P(e) is computed by marginalizing A out
of P(A,e) by (according to [12])

P(e) =) P(Ae) = P(x1,e) + P(x2,) + ... + P(xpe) . (2:3)
A
The posterior probability distribution of the variable A given the evidence e

is calculated using the statement of the Bayes’ theorem (according to [12])
which is given by

p(ale) = 1A (24)
_ P(4e)
=T P(Ag) (2.5)

where P(Ale) denotes posterior conditional probability for the variable A
given the evidence e. P(e|A) is the likelihood distribution denoting the
probability distribution of the evidence e with fixed probability parameters
of the variable A. P(e) is the marginal likelihood which denotes the a-priori
probability of observing the evidences given the prior beliefs [15].
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In addition, if for example two variables A; and A; are independent given
the evidence e, then the probability calculus must yield

P(Aqle) = P(A1]|Aze),

according to the basic axioms of probability. More details are described in
the books [12] and [15].

We again consider the example given in Figure 2.1: The node VLAT (de-
noting the velocity vector) contains three states (to, straight, from) with the
corresponding prior probability distribution (0.3,0.4,0.3). If an exact sensor
measurement is given that the vehicle is moving in the direction of lane
marking, we have the hard evidence (1,0,0). In order to calculate the CPD
P(VLAT|e) for VLAT given e we compute the joint probability distribution
P(VLAT,e) at first:

P(VLAT,)=(03-1,04-0,0.3-0) = (0.3,0,0),
then the prior probability P(e):
P(e) = Yyrar P(VLAT,e) =031+ 04-0+03-0=0.3,
The CPD P(VLAT|e) can be computed by normalization:
P(VLAT|e) = (33, 5. o) = (1,0,0) .

In the case that the sensor measurement is not exact, we could get an
evidence e as for example (0.6,0.3,0.1). We again follow the presented
computation steps:

P(VLATe) = (0.3-0.6,0.4-0.3,0.3-0.1) = (0.18,0.12,0.03) ,
P(e) =03-0.6+0.4-03+03-0.1=033,
0.18 0.12 0.03

to calculate P(VLAT |e).

2.1.6 Bayesian Inference

Bayesian Inference is one of the fundamental methods for the interpretation
of probability where probability is considered as a way to represent a degree
of belief in a statement, or the degree of confidence given evidences. Based
on this interpretation of probability there are different approaches within
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2.1 Bayesian Network

Bayesian Inference. In the following the model-based Bayesian inference is
represented which is derived from the Bayes’ theorem.

By observing the statistically independent evidences ey,...,e;; for the variables
of the model U = (Ay,...,An), we want to calculate the probability distribu-
tion of all dependent unobserved variables. Thus, we extend the Chain Rule
in Equation (2.1) by multiplying the initial joint probability of the model
P(U) with the inserted evidence e (as described in [12]):

n

P(U,e) = P(U)-e =] ] P(Ai|pa(A He (2.6)

i=1

The resulted joint probability distribution P(U,e) is the updated summary
of all probability parameters after inserting the evidences into the network.
The posterior probability of a variable A; can be computed by marginalizing
it out of P(U,e) [12]:

[Ty a, P(UC)
YuPUe) ’ @7

which is also a general formulation of the Bayes’ theorem.

P(Aile) =

Input Input
:evidence Iy
v v evidencei 3
Output Output
causal diagnostic
reasoning reasoning

Figure 2.3: causal (left) and diagnostic (right) reasoning

Bayesian Inference can be implemented for two basic types of calculation:
causal reasoning and diagnostic reasoning (as shown in Figure 2.3), which are
relevant for this thesis. The first is top-down (from cause to effect) calculation
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where the evidences are given to the parent node and the influences to its
causal dependent child nodes should be calculated. The diagnostic reasoning
denotes the bottom-up (from effect to cause) calculation where evidences are
given to the child node and the probability distributions of related parent
nodes are desired [12].

We consider again the example given in Figure 2.1. In this case the hard
evidence e = (1,0,0) is given for the states of VLAT. Using Equation (2.6)
and Equation (2.7) we calculate the joint probability distribution P({4,e) as
shown in Table 2.2. We multiply the given evidence ¢ = (1,0,0) for VLAT
with corresponding probability parameters given in the Table 2.1 denoting
the prior probability distribution P({f).

Table 2.2: Joint probability distribution P(U,e) after inserting the hard evi-
dence e = (1,0,0) to the states of VLAT

OLAT near
VLAT to straight from
False 0)-1=0 (0.08)-0=0 | (0.12)-0=0
true | (0.15)-1=0.15 | (0.12)-0=0 | (0.03)-0=0
OLAT far
VLAT to straight from

Ffalse | (0.105)-1=0.105 | (0.18)-0=0 | (0.15)-0 =0
true | (0.045)-1=0.045 | (0.02)-0=0 | (0)-0=0

P(U,e) can be utilized to (re)construct the probability distributions of the
variables OLAT, VLAT and LE by marginalizing every single of them. We
first sum up the probability parameters in Table 2.2 denoting the joint
probability distribution:

P(e) = Y P(Uje) = 0+0.15+0.105+0.045+ 0 + ...+ 0 = 0.3 .
u

Then we determine the (conditional) probability distribution of every state
by marginalizing it. We compute for the states of the node OLAT:

1
P(OLAT = nearle) = ) P(U,e):0+0 5+0+0+0+0:0.5,
OLAT=near 0.3
1 .04
P(OLAT = farle) — Z P(U,e)zo 05+ 0.0 5+0+0+0+0:0.5,
OLAT=far 0.3
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2.1 Bayesian Network

and for the states of the node VLAT:
_ 0+0.15+ 0.105 + 0.045 _

P = = = =
(VLAT = tole) VLAZT;_t P(U,e) 03 1,
=to
P(VLAT = straight|e) = ) P(Ue) = 0+0+0+0 _ 0,
VLAT=straight 0.3
P(VLAT = from|e) = Y, PUe) = 0+0+0+0 _ 0,
VLAT=from 0.3
and for the states of the node LE:
1
PLE = falsele) = ¥ P(the) — 0+0+0+01054+04+0+0 _ .0
LE=false 0.3
1 .04
P(LE =truele) = Y P(Ue) = 0 5+0+00+300 2HOH0 _ 65,

LE=true

The resulted conditional probability distribution is shown in Figure 2.4
near 0.5 to 1
far 0.5 straight 0

from 0

LE

false 0.35

true 0.65

Figure 2.4: Probability distribution after inserting the hard evidence ¢ =
(1,0,0) to the states of VLAT

In the case of diagnostic reasoning, we take for example the assumption that
LE is true. Thus, we insert the hard evidence ¢ = (0,1) to the states of LE.
For the calculation of the (conditional) probability distribution we follow
the same computation steps before. We use the Chain Rule by inserting the
evidence 2.6: P(U,e) = P(U) - e (as shown in Table: 2.3).
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2 Theoretical Basis

Table 2.3: Joint probability distribution P(U,e) in the case of diagnostic
reasoning by inserting the hard evidence e = (0,1) to the states of LE

OLAT near

VLAT to straight from
false (0)-0=0 (0.08)-0=0 (0.12)-0.8=0
true | (0.15)-1=0.15 | (0.12)-1=0.12 | (0.03) -1 =0.03

OLAT far

VLAT to straight from
false (0.105)-0=0 (0.18)-0=0 (0.15)-0=0
true | (0.045)-1=0.045 | (0.02)-1=10.02 (0)-1=0

Using P(U,e) we compute the probability distribution of the parent nodes.
We again sum up P(U,e):

Y P(Ue) = 0.15+0.12 + 0.03 + 0.045 + 0.02 + 0 = 0.365 ,
u
Then we marginalize the states of the node OLAT:

04+015+0+0.1240+0.03
Py = (0F0I5+0+012+04003) 0r1g
OLAT=near 0.365

PUe) = (04 0.0454+0+0.024 0+ 0) ~ 01781,
OLAT=far 0.365

and the states of the node VLAT:

Plie) = (0+015+0+0045) o0
VLAT=to 0.365

a2 .02
p(u’e):(0+0 +0+00)z0.3836,
VLAT=straight 0.365

0+0.03+0+0
Y PUe) = OFOBHOEO) gy
VLAT=from 0.365
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2.2 Object-Oriented Bayesian Network

Also the states of LE can be reconstructed:

1 12 . .04, .02
Y e - (015+0.12+0.03+0.045+002+0) _
LE=true 0.365

PUe) = (0+0+0+0+0+0)
LE=false 0.365

=0.

The resulted (conditional) probability distribution is illustrated in Figure 2.5.

near 0.8219 to 0.5342
far 0.1781 straight 0.3836
0.0822

from

false 0

true 1

Figure 2.5: Probability distribution after inserting the hard evidence e = (0,1)
to the states of LE

2.2 Object-Oriented Bayesian Network

Object-Oriented Bayesian Network (OOBN) can be considered as a special
modeling language combining Bayesian Network with logic-programming-
like rules. Complex domains with identical or similar properties are modeled
as inter-related and generic objects, also called Object-Oriented Network
Fragments (OONFs). Each OONF is a separated instance which is reusable
for different modelling approaches. Simple OONFs can be encapsulated
into a more complex OONF within the same model. Using the OONFs and
additional logic layers the BN itself can be built in hierarchical fashion. This
structural organization makes the representation of complex knowledge
using BN clear, efficient and flexible [16].
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A simple example is given in Figure 2.6 where the BN model of Figure 2.1
is summarized as a single OONF which can be used as evidence for upper
layers in a global logical framework.

Lateral
Evidence

Figure 2.6: Object-Oriented Fragment denoting the Lateral Evidence which
contains the information variables: OLAT (Lateral Offset), VLAT (Lateral
Velocity), and the hypothesis variable: LE

The knowledge-based default model used in this thesis (original OOBN) is
built up using three OONFs: LE, TRAJ and OCCGRID. The LE fragment is
similar to the example given in Figure 2.1. It represents the lateral dynamics
of vehicle using the lane marking as reference. TRA] contains situation
features which are derived from predicted lane change trajectory. OCCGRID
is the free space description between vehicles in the target lane. These
three basic OONFs are linked to the event variable LC (Lane Change) which
indicates the lane change probability. In higher logic layers above the LC
we formulate the vehicle-vehicle-relationship. We calculate the relative
movement and the relative position of every considered vehicle pair in
order to determine the probability distribution for the defined problem
domain based on maneuver classes: OBJCUTIN, OBJCUTOUT, EGOCUTIN,
EGOCUTOUT, OBJFOLLOW, LANEFOLLOW, DONTCARE. The modeling
concept as well as the used OONFs are described in Chapter 4 in detail.
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2.3 Dynamic Bayesian Network

Dynamic Bayesian Network (DBN) is extension of static BN by adding time
slices. Each time slice represents an ordinary static BN at a single time
instant. A DBN is characterized by linking a number of time slices using
temporal nodes and links which denote the relationship of certain variable
at different time points. It allows to follow the development of a process or
event over time. The network structure of a DBN is fixed and doesn’t change
dynamically. Only the parameters change in the light of observations from
different time points [15].

DBNS5s can be used to describe dynamic systems such as discrete-time stochas-
tic processes with input, hidden and output variables. In the context of this
thesis, we use temporal evidences which consist of time series where sen-
sor measurements are recorded sequentially in time (e.g. camera data are
recorded once every 40 — 60 ms). We add a variable representing a certain
sensor recording more than one time to the network to model the states of
the variable at current, past and future. Past and future are represented
by the temporal clones of the variable. Temporal clones can appear more
than once for the same variable if the associated times are different, e.g. for
t—1,t —2,t —3,...in the past. The output variable of a DBN can be predic-
tion (future), filtering (current) or smoothing (past) of the input evidence.
We also use hypothesis variable as output which represents the propagation
result of different input evidences and their temporal clones. An example
is given in Figure 2.7, where the example given in Figure 2.1 is extended
to DBN by adding temporal nodes to both the distance OLAT and velocity
VLAT. The variables T0.OLAT and T0.VLAT denote the recorded data of
OLAT and VLAT in the previous time step.

In order to specify the propagation between the time series, we consider
a DBN that satisfies the first-order Markov assumption which denotes the
conditional independence between future and past given the presence, i.e.
(A1 1 A1) Aty where (0 : t — 1) denotes the time slices from time
step 0 to time step t — 1 and the time step t represents the presence. Thus
the simplified representation of the joint distribution over A7) can be
formulated as [15]:

P(A(O:T)) _ I:I P(AH—l‘At) ;
t=0

where P(A*1|A;) denotes the transition model of the variable A from
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the time step t to the next time step t + 1. This transition model can be
considered as the CPD between the states of A at time ¢ conditioned to
its parent which is the former time slice of A. Thus, we use the so-called
transitional conditional probability table (TCPT) to specify the relation of the
same variable between successive time steps. The resulted joint distribution
P(A©OT)) contains information of the variable A of the entire time series
from0to T.

A important task of this thesis is to learn the TCPTs in the developed DBN
model. We create temporal clones of the input information variables in the
LE fragment (similar to the example given in Figure 2.7). The relationship
between the input information variable and their temporal clones should be
learned from the collected data set using a suitable learning algorithm.

near 0.5 to 0.3
o o5 TO.OLAT TO.VLAT gt | 04
from 0.3
TCPT (TO.OLAT—T1.0LAT) TCPT (TO.VLAT-T1.VLAT)
TO.OLAT | near far @ T1VLAT TOVLAT | to straight from
near ? ?
far ? ? to ? ? ?
straight | ? ? ?
from ? ? ?
LE
OLAT near far
VLAT to straight from to straight from
false 0 0.4 0.8 0.7 0.9 1
true 1 0.6 0.2 0.3 0.1 0

Figure 2.7: Extension of static BN to DBN using temporal cloned nodes of
TO.VLAT, TO.OLAT, T1.VLAT, T1.OLAT representing the same variables
OLAT and VLAT of the previous time step T0 and the current time step T1
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2.4 Learning Algorithms for Parameter Estimation in a
Bayesian Networks

We investigate supervised learning algorithms for parameter estimation in
the developed Bayesian Network models. Related literatures are e.g. [18],
[22], [12], [15], [9], [11], [5] and also within the AMIDST project: [17]. In this
chapter the essential learning algorithms are described.

In general, the methods for parameter estimation of a BN can be assigned to
four situations [8]:

1. Network structure is known and the data set is complete.
2. Network structure is known and the data set is incomplete.
3. Network structure is unknown and the data set is complete.

4. Network structure is unknown and the data set is incomplete.

In situations one and two the graphical model M = (G, ®) is given with
structure G and probability parameters ®. We use learning algorithms to
estimate the network parameters from a complete or a incomplete data set
D. A complete data set usually denotes a matrix without missing entries,
i.e. each variable is specified by a value for each case. In situations three
and four the network structure is missing and needs to be specified at first.
We need to select the set of network variables I/ from all available input
variables as well as learn the strength of the causal relationship between
them can be learned from the given complete or incomplete data set.
Common learning methods for Bayesian Networks are the Maximum Likeli-
hood Estimation (MLE) and the Bayesian Estimation (BE). Both methods are
based on the general formulation of the Bayes” Theorem [15]:

likelihood - prior

posterior = evidence !
which is
_ P(D|®)-P(©)

where MLE maximizes the likelihood and BE fully calculates the posterior
distribution. We assume in this case, that the network structure G is given
and the prior probability P(®) for each probability parameter 6 € O is
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declared. Moreover, evidence P(D) is the marginal likelihood of the data,
i.e. the a-priori probability of seeing the data given the prior probability
distribution (as described in Section 2.1.5) [15].

In this thesis, we use a particular labeling method such that the cases in the
given data set is not completely specified. Thus, we need to take the missing
the values into account. A common learning algorithm to cope with an
incomplete data set is the Expectation Maximization algorithm, which fills
the empty spaces with expectation values based on the current probability
parameters and optimizes the outcomes using MLE or BE. Another possible
approach is the Adaptation where the probability parameters are updated
sequentially by each observed data. Both learning algorithms are suitable to
cope with a massive data stream.

2.4.1 Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a common algorithm for estimat-
ing the parameters in the case of given network structure and a complete
data.
Assume given the model M and a data set of independent and identically
distributed observations D, then the likelihood of M given D is defined
as [12]:
L(M|D) = H P(dM), (2.9)
deD

where P(d| M) is the likelihood of M given the single case d € D.
The principle of MLE is to choose the parameters set ® in the fixed model
M such that the likelihood is maximized for the given data set D. For the
computation we usually maximize the log-likelihood by (according to [12])

O = argmaxlog L(®|D) = argmax ) log P(d|©) . (2.10)

) ©  deD

In a binomial case using binary states X = (true, false) for example, we have
the Bernoulli Distribution :

P(X|0) = {

For a data set D = (true, false, false, true, true,...), where n cases are true
and m cases are false, the likelihood is given by

L(0]D) = 0"(1 — )™ .

0 X = true
1-6 X=false
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We maximize the log-likelihood:
log L(6|D) = n -log(0) + m -log(1 —90) ,
dlogL(0|D) _n  m —0
do e 1-6

h=—"_.
n—+m

In general case with K states where X = (x1, ..., x¢) and ® = (01, ..., 0) we
compute for each parameter 6 € ®

_ N
25:1 Nk

using the counted number Ny of observations for the state k [12]. Thus,

the maximum likelihood is computed in general as the fraction of counted

observations of a particular state given for a parent configuration over the
total number of the cases that this parent configuration is given in the data.

0, (2.11)

2.4.2 Bayesian Estimation

An alternative method for parameter estimation given a complete data set
is Bayesian Estimation (BE) which is very similar to MLE and converges
to the same values given a large number of cases. The difference is, that
we maximize the posterior instead of the likelihood function. A frequently
used approach is to give the prior as Dirichlet distribution which is specified
by a set of hyperparameters a4, ..., &¢. Thus, the posterior is also given as
Dirichlet distribution [15]:
1 K ap+np—1
P(O|D) % 116 ,
k=1

which is in this case very similar to the likelihood function (as shown in
Equation (2.9)). The hyperparameter «; is usually given as one more than
the count of k;;, outcome. We add them to the outcome Equation (2.11) [15]:

Ny + ay
Yh_y (Ni + )

An important advantage of BE is that the virtual counts (hyperparameters)
prohibit the probable zero counts which cause zero probability parameters
as outcome [12].

0= (2.12)
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For the binary problem given in last subsection 2.4.1 e.g., we obtain
n+1

nrmiz’

as outcome if using Bayesian Estimation [12].

f=

2.4.3 Expectation Maximization Algorithm

In the practice, the data set used for learning is often not complete. Some
measurement data are missing or cannot be observed. Futhermore, values
in the data matrix can be intentionally removed by use of labeling method
to specify particular situations. We consider in this subsection the Expec-
tation Maximization Algorithm (EM algorithm) which is a frequently used
approach for parameter learning given a incomplete data set. We use for this
thesis the "EM algorithm for graphical association models with missing data"
which is developed by Steffen Lauritzen [18]. The algorithm is explained in
the following based on example.

The basic concept of the EM algorithm is the iteration between the expec-
tation (E-step) and maximization step (M-step). At first we define a stop
criterion (maximum number of iterations or convergence threshold) and
set the starting time t := 0. At each iteration step, expectation counts
E[N(A;, pa(A;)|D,®")] of particular configurations are determined from the
data D using the parameters @' at current time ¢ in the E-step and added
to both the denominator and numerator of the maximization equation in
the M-step. The new probability parameters are computed by maximizing
either the likelihood function (MLE, see Subsection 2.4.1) or the a posterior
distribution (BE, see Subsection 2.4.2). The iteration keeps running until the
predefined stop criterion is reached. As precondition, the model structure G
and the initial parameter set @ must be given over the variables U = Ay, ...
, An. We estimate the probability parameters 6, € © corresponding to the
conditional probability P(A; = k|pa(A;) = j), i.e., the conditional probabil-
ity for variable A; € U being in its kth state given the jth configuration of
the its parents pa(A;) € U. We find the parameters 6; jk which maximize the
likelihood (MLE) or the posterior (BE) for the given data set D = dj, ..., dp.
A compact description of the EM algorithm used in this thesis is given as
followed which is taken from the book [12] (Chapter 6, Parameter Estimation
on page 224).

1. Choose a stopping criterion, e.g. the difference of log-likelihood be-
tween two iteration steps: € > 0
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2. Let Gi]-k €0, where1 <i<n1<k< |sp(A;)] —1, and 1 <
j < |sp(pa(A;))|, be some initial estimates of the parameters (chosen
arbitrarily).

3. Set t:=0.

4. Repeat:
E-step: For each 1 < i < n calculate the table of expected counts:

E[N(A; pa(A;)|D,0")] = Y P(A;, pa(A;)|d,0") .
© deD

M-step: Use the expected counts as if they were actual counts to
calculate a new maximum likelihood estimate for all Oijk € o

6., - _ EoN(Ai=kpa(d) =)D
T ylsela ‘IE@[N( A = kpa(A;) = j|D)]

Set @t .= @' and t :=t+1.
Until |log P(D|@") —log P(D|@' )| < e

Before running the algorithm we have to specify the set of variables for which
conditional probability distributions and densities should be estimated.
Thus, we add an experience table to each of those variables in order to store
the experience counts, i.e. the number of times that a particular parent
configuration given in the CPTs is observed or "expected". Furthermore, we
need to optimize the initial parameter set since the EM algorithm does not
guarantee the convergence to the global optimum.

For better understanding of the EM algorithm, we consider a simple example
based on the lane change prediction model used in this thesis. The model
M is shown in Figure 2.8. It contains two input variables: LE and TR, and
one output variable: LC. LE and TR are the computed likelihoods of the
corresponding BN-fragments of the input layer which represent a summary
of the observed evidences. LC represents the lane change probability. A
detailed description about this knowledge-based BN-model with all of its
fragments is given in Chapter 4.

Using the training data set D (as shown in Table 2.4) with missing values
and the initial default parameters given in the CPT of LC, we compute
one iteration to update the probability parameters in the CPT. The training

43



2 Theoretical Basis

data set of this example is labeled to determine the conditional probability
parameter for the particular parent configuration that LE = true and TR =
false. We compute the conditional probability for LC = true whereas the
state LC = false is the complementary probability. The prior probability
distributions of LE and TR stay equally distributed and should not be
changed.

false 0.5 false 0.5
true 0.5 LE TRAJ true 0.5
LE false true
TRAJ | false true false true
false | O 0.3 0.7 1
true |1 0.7 0.3 0

Figure 2.8: Simplified LC-Model

LE | TRA] | LC
false | false | false
true | false ?
true | false ?
true | false ?
true | false | true
true | false | true
true | false | true
true true true

Table 2.4: Training data set

In the E-step we calculate the expected counts E[N(LC = frue,LE =
true, TR = false)]. Missing values in the labeling of LC are filled using
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the current corresponding parameter, 0.7 in this case, for the configura-
tion LC = true,LE = true,TR = false. Given a corresponding labeling
(LC = true) in the data we count +1, otherwise we count +0. We count for
the training data set (Table 2.4) given in the example:

E[N(LC = true, LE = true, TR = false)|D,0°]

N
=Y Py(LC = true,LE = true, TR = false)|D,0%)

i=1
=0407+074+07+14+14+1+0
=51.

Furthermore, we determine the denominator by counting the frequency of
seeing the parent configuration LE = true,TR = false:

E[N(LE = true, TR = false|D]

N
Y " Py(LE = true, TR = false)|D)
i=1
O+14+1+14+1+1+140

6.

In the M-step we add the counts above to the denominator and numerator if
using the MLE:

Eg[N(LC = true, LE = true, TR = false)]
Eg [N(LE = true, TR = false)]

H=
5.1

6
=0.85.

If we use the BE we additionally add virtual counts to the expectation counts,
where 1 is added for the counting the state true and 2 is added for counting

both true and false of the variable LC.

E[N(LC = true, LE = true, TR = false)|D,6°] =51+1=6.1,
E[N(LE = true, TR = false)|D,0°] =6+2=38.
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The probability parameter is updated in this case:

Eg [N (LC = true, LE = true, TR = false)]

6= Eg [N(LE = true, TR = false)]
6l
8
= 0.7625 .

The resulted the CPT is shown in Table 2.5 (using MLE in the M-step) and
2.6 (using BE in the M-step).

LE true false
TRAJ | true | false | true | false

true 1 085 | 0.3 0
false 0 015 | 0.7 1

Table 2.5: Resulted CPT after computing one iteration using EM algorithm
where in the M-step the likelihood is maximized

LE true false
TRAJ | true | false | true | false

true 1 0.7625 | 0.3 0
false 0 02375 | 0.7 1

Table 2.6: Resulted CPT after computing one iteration using EM algorithm
where in the M-step the posterior is maximized

2.4.4 Adaptation

When a system is running we repeatedly receive at each new time cycle new
observations which are inserted and propagated as evidences. Thus, we
can immediately take the influence of the new observations into account to
improve the (conditional) probabilities specified for our system. A suitable
approach doing this is the Adaptation, also know as sequential updating,
which can only be implemented to discrete chance nodes. [12]

For the task of parameter estimation there are different statistical methods
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to adapt the new observation. A general approach is called fractional up-
dating where a fictitious sample size s is introduced to express the certainty
of a learned distribution. For a set of counts (Ny, N, ..., Nj,) of m states
X = {x1,x2,...,xp} of a child node A the sample size can be chosen as
5 = Nj + Ny +..N;. The larger the sample size, the smaller the second-
order uncertainty. If e.g. a particular configuration is certainly observed
one time in the state xq, then we count Ny := N; +1 and s := s+ 1 such
that P(A = x1) := I\s]fll and the rest are updated toP(A = x;) := sNTll for
i = (2,3,...,m). Furthermore, we influence the counting by multiplying the
sample size with a fading factor q € (0,1) before the adaptation takes place.
This method is called fading which is used to ensure that the counts are not
overestimated such that empty counts build up from the history and the
parameters become hardly changeable. Fading factors are stored in a fading
table, where each value in the table corresponds to a parent configuration. If
a fading factor is not set between 1 and 0 for a particular parent configura-
tion then the adaptation is disabled for this configuration. In the introduced
example above for the incoming hard evidence to the state x; the counting
and sample size are updated: Ny := N;-g+1,s:=s-g+1and N; = N;-g
for i = (2,3..,m). If the same evidence is given more than one time, the
counting is computed recursively: Ny := ((Ny-g+1)-q+1)-g+1...). The
second equation can be formulated as: s* = ﬁ to obtain the effctive sample

size which represents the steady-state situation. On the other hand, we can
adapt the fading factor by a declared effective sample size: g := S*Sil . [12]

For a general case, let assume as given a variable A with states X =
(x1,x2,...,Xn), the current counting: Ny for k € [1,n] and the fictitious sample
size s = Y Ny denoting the present certainty of P(A|pa(A) = m) for a
particular parent configuration 7r, whenever a evidence P(7t|e) is inserted,

the states of A are updated (sequentially) [12]:

N - P(X|me)- P
P(A = xlpa(4) = ) = N20E .q(+‘§(7?\e> () ()

where k € [1,n]. The fading factor g € (0,1) for the parent configuration 7 is
adapted using a declared effective sample size s* [12]:

q= S*ffﬂ . (2.14)

In this thesis we use the Adaptation to learn the probability parameters
within a TCPT between different time-slices of the developed DBN fragment.
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An additional explanation of the algorithm as example of this particular use
case is given in the Section 7.2.

2.5 Construction of the Network Structure

In this thesis two different modeling approaches for the construction of
the network structure are used and compared. The first is the knowledge-
based modeling where the expert knowledge about each domain is explicitly
incorporated into the network structure. The second approach is a pure
data-driven model which is systematically determined by the given data
without the use of knowledge-based modeling. This section provides a brief
description about the modeling steps of both approaches.

To construct a knowledge-based BN model we need deep understanding of
the problem domain. Similar to the human thinking process, a knowledge-
based BN is constructed based on different logic layers. The goal is to
provide estimates of certainties for events which are not directly given in the
data set. First we need to identify these hypothesis events which are grouped
into sets of mutually exclusive and exhaustive states of events to form the
hypothesis variable(as described in [12]). In the next step we analyze the
characteristics of the corresponding data set of the problem domain and
extract all information variables which have high influence on the hypothesis
variable. Related information variables are grouped into the same domain
as a single network fragment (OONF). Causal related variables or fragments
are aggregated by adding a corresponding child node to the next level.
Each node within the BN model represents the knowledge of a physical or
statistical relationship between the modeled random variables. The states of
each variable must be explicitly modeled by considering the constraints and
the causal relationship to the previous and next logic layer. We initialize the
probability distributions of the modeled variables using a suitable expression
based on expert knowledge or simple physics/kinematics relations. The
probability parameters given in the CPTs can be estimated and optimized by
suitable learning algorithms. The whole process is structured as follows:

1. Formulation of problem domain, defining hypothesis variables for the
output layer

2. Feature selection, finding information variables in the input layer

3. Specify the states for all defined variables considering the constraints
and requirements
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4. Group and link all related information variables to form the informa-
tion channels

5. Initialization of probability parameters

6. Optimization/learning of the probability parameters

The other approach of data-driven modeling used in this thesis is the Naive
Bayesian Network. Under the assumption that each information variable
is only dependent on the defined initial output event, we simply associate
all the information variables in the input layer with the event variable
in the output. In other words, there is no logic based structure since the
relationship between the input and the output is only based on the given data
set. Through a suitable feature selection algorithm (according to [4], [17], [12]
and [19]), we systematically arrange all observable variables given in the
data set by their influence on the output event. We form the input layer by
selecting a certain number of variables which have high impact on the output
event. The strength of causal relationship between the information variables
and the initial output event (to be recognized) is determined systematically
by a learning algorithm such as the EM algorithm as well as the Adaptation
approach.
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This chapter gives an insight about the technical background according to
the work of this thesis. At first, Section 3.1 provides a description of the term
"intelligent vehicle" including its essential components and the development
state. Section 3.2 briefly introduces the environment sensors which are the
receptors of the essential information used for the situation analysis. An
idea about how and where the developed models can be set up is given in
Section 3.3 where the concept of situation awareness is explained.

3.1 Intelligent Vehicle

"Intelligent vehicle" represents a collective term of the connection and collab-
oration between computers, sensors and vehicle control systems. The sensor
systems have the task of information perception. The collected information
is processed and analyzed by the implemented algorithms. As a result
particular instructions are send to the actuators. [29]

A common task of an intelligent vehicle is to assist the driver in vehicle
operations. A variety of assistance systems are already available in the
premium vehicles on the market today. Well known assistance systems in
the serial cars nowadays are e.g. Anti Blocking System (ABS) and electronic
stability control (ESP), which help the driver in the stabilization the vehicle
in special situations. With the implementation of environment sensors, such
as ultrasonic, radar and (stereo-) camera, the advanced driver assistance
systems (ADAS) with defined use cases perceive input data from multiple
sources and take necessary control actions according to the environment
features. Different ADAS are already implemented in today’s serial cars
and have already achieved respectable improvements in terms of comfort,
safety and efficiency. A representative system is the Adaptive cruise control
(ACC) which is an extension of cruise control and can regulate the longitu-
dinal distance relatively to the controller-object-vehicle in the front. Further
development of ACC system is undertaken by many car manufactures. Mer-
cedes Benz e.g. introduces in 2013 the DISTRONIC PLUS in combination
with steering assist [1]. DISTRONIC PLUS is an adaptive control system
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based on multiple radar sensors (long-, medium- and short-range radar)
with integration of stereo camera. It monitors the longitudinal and lateral
dynamics of EGO vehicle relatively to the front car and the lane marking
up to a distance of 200 meters and a velocity of 200 kilometers per hour. If
the driver activates the system and sets a desired velocity, the system takes
over the driving task of braking and acceleration and holds the EGO vehicle
in the center of the track. Moreover, sensors are installed within the vehicle
to calculate the behavior of the driver. For the DISTRONIC PLUS system,
the driver must have his or her hands on the steering wheel, otherwise the
driver is getting warned by visual and acoustical signals and the system is
deactivated (secured Human-Machine Interfaces (HMI)). [1] [29]

The described ADAS belong to the serial stage today. Driver is still responsi-
ble for the vehicle control. The automated functions can only be activated
under special circumstances and the driver has to take all the remaining
driving tasks such as the monitoring of driving environment and of the
operational systems. These systems belong to the automation level 2. For
the future, we are talking about autonomous driving which has become a
very popular theme since 2009. The first stage of autonomous driving is
the conditional automation (automation level 3) where the dynamic driving
tasks such as braking, acceleration, steering and also overtaking are done
by the systems with the expectation that the human driver will respond
appropriately to a request of intervention. The automation level 4 is the high
automation, where the systems must be able to handle all driving tasks, even
if a human driver does not respond to the request of intervention. The final
level 5 is the full automation, that the vehicle is able to handle driving tasks
in all environment conditions that can be handled by a human driver. [6] [29]

One of the most important task in the development of autonomous driving
system is the environment perception. The autonomous vehicle must be able
to record and interpret the local environment in the required completeness
and accuracy. Essential traffic environment features include e.g. the lane
markings, the obstacles and the traffic participants. Furthermore, the state of
the EGO vehicle is calculated using on-board sensors in order to compute the
relative dynamics between the EGO vehicle and the detected environment
features. The current development focuses on the use of High-Definition
digital map (HDM) which should significantly improve the accuracy of
satellite-based localization and compensate the weakness of environment
perception. [29]
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3.2 Sensor systems

There are two basic categories of sensor systems. The first are the on-board
sensors which perceive information about the current state of EGO-Vehicle
such as wheel speed sensors, steering wheel angle sensors, pedal sensors,
gear sensors, pressure, temperature sensors and more. The second are
the environment sensors such as stereo cameras, radar, laser scanners and
ultrasonic sensors.

On a low level, different sensors independently provide measurement signals
which are processed and associated by fusion algorithms. Sensor fusion is a
very important task. Redundant data about the same object are reconciled.
The improvement is achieved since the dependency of measurement errors
can be taken into account by estimation algorithm. Incomplete or missing
data are complemented mutually by different types of information. Acqui-
sition rate of the entire system can be increased by this approach of data
fusion. This can be achieved on the one hand by the parallel processing of
information from the single sensors, on the other hand by a corresponding
temporal design of the acquisition process. [29]
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Figure 3.1: Environment Sensors [3]

The environment sensors radar (short, middle and long range) and camera
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(mono and stereo) are specified in Figure 3.1. They are used to provide
the measurement data for the purpose of this thesis. The measurements
produced by stereo-camera and radar are fused by Kalman filter such that
the strength of both sensors is combined and the weaknesses are reduced.
Furthermore, a synchronization of measurements must be done to ensure
data consistency. The stereo camera e.g. used for this thesis has the measure-
ment frequency of 60 milliseconds and a detection distance up to 60 meters,
while the radar systems have the measurement frequency of 66 milliseconds
and the detection distance up to 200 meters.

3.3 Situation Awareness

Obtaining the data from environment sensing we want to determine the
situation awareness which plays a fundamental role for ADAS and au-
tonomous driving. In the human thinking process, situation awareness can
be considered as a process of data perception and processing as well as the
comprehension of the obtained information. Based on the given information
as well as our knowledge and ability, we have to accurately interpret the
situation features in very short time in order to perform the correct decisions
and actions. The automotive situation awareness is not very different. It
consists of the environment representation (situation model) and the situa-
tion analysis (Fig. 3.2). Environment representation can be considered as a
dynamic data structure in which all internal and external representations
of objects and infrastructure elements are integrated. The recording and
tracking of the objects and elements are carried out using suitable, usually
fused, sensor data, which are (mostly) obtained from (stereo) camera or
radar. The detected and integrated objects and elements are mapped relative
to a common reference system to extract the perceived features for situation
analysis. In complex ADASs (e.g. avoidance assistance), comprehensive
data about the lane marking, the vehicle dynamics as well as the free space
analysis are recorded and processed for the tasks of situation analysis which
gives a suitable interpretation of the environment situations as well as a
probabilistic prediction of the future evolution of the traffic scene. Such a
system for the situation assessment should not only be efficient in the sense
of accuracy and short calculation time, but should also meet a number of
functional requirements. [29]

There are two basic situation models (described in [29]) for the representation
of the environment features: object-based representation and grid-based
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representation. The grid-based approach represents the environment as a
discrete cell-system where the vehicles move over the grid and the on-board
sensor system provides information on whether specific cells are free or
not. This type of modeling is primarily suited to the representation of a
static scenario. It does not require any model hypothesis and is therefore
very robust against model uncertainty. In the object-based approach all
relevant traffic participants, the relevant infrastructure elements and also
the EGO vehicle are described by their individual dynamic model such as a
time-discrete state-space model. Information and states, such as positions,
velocities and object expansion, are continually updated with the incoming
sensor measurements. Since both the measurement data as well as the
models themselves contain uncertainties, suitable filtering methods are
necessary in order to take the uncertainties of the environment representation
into account. Frequently used methods are e.g. Kalman Filter and recursive
Bayes Filter. Since there are advantages of both grid-based and object-based
approaches, the combination of both methods are utilized in the hybrid
architecture for the environment representation [29]. In this thesis the
knowledge-based BN models are based on the same strategy.

Sensor 1 |—v —o| Function 1
Information fusion _._
Situation analysis
. :1> and .
Environmental prediction

representation e.g. Bayes Network

Sensor n I—' —'l Function m

Figure 3.2: Data structure of a modular architecture for ADAS [29]

Situation analysis is used to establish associations among the entities in
the situation model (according to Fig. 3.2). Due to the safety nature of
the use case, necessary and accurate interpretations and prediction of the
situation must be provided in very short time such that the vehicle control
systems have enough time to react correctly to the given situation. The
situation analysis uses a variety of different models and algorithms, among
others the (Dynamic) Bayesian Network. The last is used in this thesis for
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identification and interpretation of driving maneuvers of the EGO vehicle
and the surrounding OB]J vehicles in the highway traffic. More details are
given in the following chapters.
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This chapter describes the essential aspects of the development environment
including the experimental vehicle, the software architecture, the features of
data set, the evaluation method and the construction of original knowledge-
based model. The content is based on the work of [14] and [24]. The
modified procedure for data labeling for the ground-truth data set, as well
as the suitable data reorganization, reflected in the remodeling of logic layers
for fast parallel computation has been part of this master thesis work, and
its preliminary description is given in [28], which is under review.

4.1 Experimental Vehicle

A Mercedes E400 is available as an experimental vehicle which is used for the
on-line evaluation of developed algorithms as well as for the collection of real
traffic data for off-line learning and testing. The vehicle has a stereo camera
behind the windshield and three radar systems for the short range from 0.25
to 60 meters, the mid range up to 130 meters and the long range up to 200
meters in front. The radar systems are from standard series production of
Daimler AG and used in assistance systems such as DISTRONIC PLUS. The
stereo camera is from development stage. It has a width of 0.2 meters and an
aperture angle of 40°. The recording frequency is approx. 6o milliseconds.
The experimental vehicle is equipped with three computer systems. The first
computer is responsible for recording and processing radar data which are
provided from the mess interface. Radar objects are formed and forwarded
by the CAN-Bus. The second computer is image processing computer. It
includes the algorithms for the fusion and analysis of the image processing
objects, as well as provides processed data of the lane marking and object
vehicles as well as for the free space analysis. These environment features
form the basis for the developed maneuver recognition framework of this
thesis. The third computer manages the communication between the com-
puter systems and the sensors. It shows e.g. the status of the respective
units.
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4.2 Software Modules

The software modules developed for the project are grouped into so-called
world model [14], which represents a unified framework for the organization
of input data and the communication between the implemented algorithms.
The world model is based on different logic modules, including the sensor
data processing, the formation of BV-objects, the specification of object
relationship as well as the recognition of driving maneuver. The procedure,
from data processing until the forwarding of the environment features to
the network classifiers, is visualized in the fig 4.1.

Raw

- => Image Pro-
Video cessing
Data

Data ﬂBNT Features

Raw Fusion

Radar Situation Analysis
Data /

Radar- Sensor
Processing

Static BN/DBN

Real Highway Traffic

Raw
Sensor
Data

Maneuver Recognition

Figure 4.1: The procedure of processing and forwarding the environment
features for the situation analysis using BN [27]

In data processing, all the necessary input data from radar and camera are
encapsulated and organized for the fusion. A fusion algorithm based Kalman
filter is implemented to extract the information from different environment
sensors where the redundant data about the same object are improved
and the incomplete data are complemented mutually by different types of
information. Information e.g. about the lane marking and the outline of
the OBJ vehicle is provided by the stereo camera. The relative position and
velocity in the longitudinal direction (x-direction) between two OB]J vehicles
are calculated by the fusion of the radar and camera data. The stereo
camera can accurately determine the distance between the EGO vehicle
and the OB]J vehicle in the front, but cannot observe the objects which are
obscured by other OB] vehicles or obstacles in the environment. The hidden
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objects are usually detected only by the radar, based on electromagnetic
waves. However, the radar data alone is not accurate enough for the exact
specification of the information about each object in the surroundings. It can
be only used for the recognition of possible driving intentions, like the need
to perform a lane change due to a slower front vehicle.

The situation characteristics extracted from the data fusion are evaluated by
means of a driving maneuver recognition module. Features such as object
vehicle and lane markings are stored as input data in their own modules.
They are passed on to the developed classifiers of Bayesian Networks.

The software modules have been transferred both to the Linux platform
off-line for statistical evaluation and to the on-board computers in the ex-
perimental vehicle for the on-line testing in the real highway traffic. The
algorithms are developed in C++ and converted into C code in the computa-
tion systems of the experimental vehicle. The Bayesian networks models are
developed within the software tool HUGIN, which allows the graphical mod-
eling and parameterization of the BN, and provides functions such as feature
selection, data-based learning of the network parameters and network struc-
ture, as well as the automatic C code generation. In addition, HUGIN has an
interface for application programming with the corresponding C libraries for
the simplified integration of the generated C code in different development
environments. The integrated C library of HUGIN forms the basis for the
exchange computation results and likelihood formation by the implemented
BN models on-line in the experimental vehicle.

4.3 Data

The test data are collected on different European highways, in direction from
Stuttgart-Singen(Germany) A81, in direction Stuttgart-Kalsruhe on A8, as
well as in the vicinity of Luxembourg on Al, A3 and A6. When one of the
defined lane change maneuvers to be recognized by the system is detected,
the recording button is activated by the driver and a measurement sequence
is saved for the purpose of analysis and learning. All sensor data before
and after the fusion from the last 30 seconds are recorded. The resulting
data occupies 4.3 GB of disk space for each driving sequence which might
contain several vehicles in the traffic scene.

The recorded sequences are played offline as video sequences using the
same image processing software as in the experimental vehicle. Each OB]J
vehicle, which is documented in the video sequence, forms a pair relation
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with the EGO vehicle. A part of the input data as well as the classification
results of the Bayesian network for the vehicle pair are structured in Excel
tables. We label the data for each vehicle side of the considered vehicle
pair (OBJLEFT, OBJRIGHT, EGOLEFT, EGORIGHT) in a four-line block-wise
representation for each time cycle. The resulted EXCEL sheet contains 77
variables including input data and the computed probability results. If all
data per time cycle is combined as one data case, this results in 4 - 77 = 308
variables per each time step, and per each pair of vehicles.

4.3.1 Input Data

Input data can be assigned to different categories according to the modules in
the software architecture. The first category is the lane detection containing
information about the lane markings and lanes. The most important variables
are the lane index id, the curvature and the change of the curvature. Lane
index id is essential for the assignment of detected object vehicles. Since the
image processing recognizes the lane markings to the left and right of EGO
vehicle, the system can build up to 3 lanes with different identification index.
Curvature and its change (derivation) are required to transform the lane
coordinate systems into the Frenet-coordinate-system (as shown in Section
4.4) in order to make the relationship of the object vehicle independent
from the curving segments of the road. This corresponds to computing
relevant variables in the vehicles” lane coordinate system. The variables
characterizing the lane and lane markings are presented in Table 4.1.

Table 4.1: Lane information (according to [14])

lane_id lane index
co curvature
€1 derivation of the curvature
lanemarkingtype | types of the lane marking (solid or dashed)

The second category includes the radar objects which provide the essential
information for the adaptive distance control of the ACC function. Radar
objects mainly relate to the relative positions and velocities between the EGO
vehicle and the detected OBJ vehicles in the longitudinal (x) and lateral (y)
direction. Moreover, every detected OB] vehicle maintains an identification
index (id) and a position index (posinf). Since the radar can not detect the
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lane markings, the position information of every OB]J is relative to the EGO
vehicle. There are six possible positions specified by the radar of today’s
serial production. These are left, relevant, right, left hidden, front hidden
and right hidden (see Fig. 4.2). In addition, the motion state mouvstate of
a radar object is given as: undefined, stationary, moving, opposite. The
essential variables of radar objects are listed in Table 4.2. [14]

Left Front hiddenl Left hidden

Right Relevant Right-hidden

—_——— e — — — —

Figure 4.2: 6 possible positions (posinf) of radar objects [14]

Table 4.2: Variables for the specification of radar objects (according to [14])

id identification index of detected object
Xyel relative longitudinal distance [m]
Yrel relative lateral distance [m]
(2 relative velocity in the longitudinal direction [m/s]
Uy, relative velocity in the lateral direction [m1/s]
posinf position information of detected object
movstate movement state of detected object
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The third category denotes the BV-objects representing the results of the
image processing algorithms which are developed by the BV-team of Daim-
ler AG. BV-objects provide partly the same information about the relative
distance and velocity between EGO and OB]J vehicle, as well as between two
detected OBJ vehicles. These information are usually fused with information
from the radar in order to obtain stable and robust estimates about the
respective states. In addition, BV-objects include outline characteristics about
the detected objects such as their length and width, and features with respect
to the lane marking, e.g. the yaw angle (i) and its temporal derivative (i)
as well as the lateral distance (OLAT) and velocity (VLAT). The recognition
distance of BV-objects is up to 60 m. The essential variables that characterize
the BV-objects are listed in Table 4.3.

Table 4.3: Variables for the specification of BV-objects (according to [14])

id identification index of detected object
Xrel relative longitudinal distance [m]
Yrel relative lateral distance [1]
(2 relative velocity in the longitudinal direction [m/s]
Uy relative velocity in the lateral direction [m/s]
ax,, relative acceleration in the longitudinal direction [1m/s?]
Ay, relative acceleration in the lateral direction [m/52]
1% yaw angle of OB]J vehicle according to the lane marking
) angular speed according to the lane marking
OLAT lateral distance relative to the lane marking
VLAT lateral velocity relative to the lane marking
L length of detected object
B width of detected object [m/ s7]

In addition to the categories described above, the free space analysis can
be assigned to the last data category. The free space analysis is based
on different algorithms provided by the BV-team and localization team
of Daimler AG. The basic idea is to compute the longitudinal and lateral
dynamics with respect to the detected obstacles, which can be e.g guardrail,
people or vehicles. This category is not really relevant to the work of this
thesis since the specification of the free space is modeled explicitly as BN-
fragment using data from the three above described categories.
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4.4 Coordinate System

As basis for the modeling of the situation characteristics (features) we use a
symmetrical coordinate system where two Cartesian coordinates are trans-
formed to Frenet coordinates (see Fig. 4.3) such that the lane is always
rectilinear in the view. The transformation is done using the Frenet-Serret
formulas, where each point on the lane marking, which can be considered as
a curve 7(t) =(cos(t),sin(t),t) T, is represented by the vector tangent unit T'(t)
to the curve, the vector normal unit N(t), and the binormal unit B(t) [14]:
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Figure 4.3: Symmetric coordinate system to model the Vehicle-Lane-Marking
relation
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The transformed coordinate system is implemented to each of the lane
marking left and right of the vehicle, which allows a suitable description
of the driving behavior within the lane between the two lane markings left
and right, as well as for the time points when the vehicle is crossing the
lane marking of the left or right side (Vehicle-Lane-Marking relation). An
example is given in Fig. 4.3 where three situations are presented:

1. Vehicle is in the left lane. The coordinates for both vehicle sides are
positive.

2. Vehicle touches as well as starts to cross the lane marking on the right
side. The coordinates for the right side of the vehicle becomes negative.

3. Vehicle middle (mid point of front bumper) has crossed the lane
marking which causes a coordinates transformation into the right
target lane. (Definition of a lane change)

4.5 Definition of Lane Change

The coordinate system is the basis for the modeling of the vehicle-lane
marking-relation which again leads to the definition of lane change. For the
modeling, learning and evaluation, which are presented in the following
sections and chapters, we clearly define the time points:

1. the vehicle is hurting the adjacent free space by touching the lane
marking (Fig. 4.3: LMT).

2. the vehicle is entering the adjacent lane by crossing the lane marking
(Fig. 4.3: LMC).

Based on the two time points of lane marking touching (called LMT) and
lane marking crossing (called LMC), we can provide a logical definition of
a lane change maneuver as well as develop methods for data labeling and
model evaluation.
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4.5.1 Ground-Truth Data Set

After the off-line simulation, the recorded measurements and calculated
situation features are structured for each time step (data base) in EXCEL
sheets where each file contains a pair relation between the EGO vehicle and
one of the recognized OB] vehicle within a certain period of time (< 30 s).
In order to simplify the learning and evaluation procedure later we generate
a ground-truth data set where the data are divided into clearly defined
classes according to the driving maneuvers. If we consider the situations
in the real traffic on the high way, we usually observe three general classes
of driving maneuver: (fulfilled) Lane Change (LC), FOLLOW and relevant
(for lane change) FOLLOW. There exist clear definitions over the first two
classes. LC denotes the maneuver class that a vehicle starts approaching
the lane marking of the current lane, crosses the lane marking and ends
up the maneuver in the target lane. The definition of FOLLOW maneuver
is that the vehicle is driving in its own current lane of motion over the
entire time period without touching or crossing the lane marking. How-
ever, the third class "FOLLOW-relevant" does not have a clear definition. It
includes canceled (or abandoned) lane change, intention of a lane change,
unclean/destructed driving behavior or even sensor measurement error. We
call this class "relevant follow" because all of the described situations end up
without crossing into the target lane. Since the maneuver of this class cannot
be explicitly specified and the data are often of low quality we exclude this
class from the ground-truth data set.

The separation process of the data set is based on the measurements of
lateral distance towards the lane marking (OLAT). The measurements of
OLAT are recorded by the stereo camera data within a distance of 60 meters.
If a vehicle crosses the lane marking, its coordinates are transformed into
the target lane. The transformation can be established in the data of OLAT.
If e.g. a vehicle is crossing into the left lane, we can observe the time point
of the coordinate transformation in the data when the OLAT measurements
denoting left side of the vehicle changes from minus to plus and of its right
side from plus to minus. This change of sign means that the vehicle center
(mid point of front bumper) just crossed the lane marking.

Based on the measurements of OLAT, two points: LMT (lane marking touch)
and LMC (lane marking cross) are labeled in every data sequence. Each
sequence of the LC class includes a piece of FOLLOW data, the time point
of touching the lane marking (LMT) and the time point of crossing the
lane marking (LMC). At the end of each LC sequence the vehicle’s position
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changes into the target lane. This new position is assigned to the coordi-
nates of the target lane, which also leads to the change of the lane index ID.
The data of a LC sequence are labeled and saved six seconds (100 cycles)
before the time of the coordinate transformation (i.e. the actual LMC). The
minimum length of the LC sequence is set to 2.4 seconds (40 cycles). We set
those constraints on the dividing data in order to ensure the quality of each
maneuver sequence. Moreover, the LC-sequences are specified by the vehicle
type and the relevant side of the LC maneuver: EGOLEFT, EGORIGHT, OB-
JLEFT, OBJRIGHT. Only a single vehicle side is considered in each sequence
under evaluation. If e.g. the OBJ vehicle changes to the lane on the right
side, this maneuver is labeled using the name OBJRIGHT since the data of
the right side of the OBJ vehicle is most relevant in this case.

The "Follow-real" class consists of tracking data of consistently FOLLOW
maneuver without touching the lane marking. The sequences in this data
class do not have any of the both defined labeling points (LMT and LMC).
The true tracking data is at least 4.8 seconds (80 cycles) long and includes
only the data where the vehicle follows the track without touching the lane
marking.

The third class "Follow-relevant" is the tracking data, where the space viola-
tion occurs. In such scenarios, the observed vehicle exhibits an inconsistent
driving behavior. The vehicle touches or crosses the lane marking several
times, but returns to its own lane instead of changing into the target lane.
The causes of such cases are e.g. canceled (or abandoned) lane change ma-
neuvers, inattentive driving and measurement error. In such case, it is often
not clear whether the classification of the algorithm should be evaluated as
right or wrong. Therefore, we exclude this class from the ground-truth data
set.

For the supervised learning (later in Chapter 5), the ground-truth data set
(about 1500 maneuver sequences) is divided into learning data set (about
1000 sequences) and testing/validation data set (about 500 sequences). All
data sequence (in form of EXCEL sheets) from both learning and testing data
set are combined into a single EXCEL sheet. The data matrix is further pro-
cessed by additional labeling method according to the learning algorithms:
EM algorithm and Adaptation approach.
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4.6 Modeling Approach

The basic idea for detecting driving maneuvers is based on the qualitative
description of the movement of a vehicle relative to a reference system, such
as the lane marking, a driving vehicle or existing free space. For the construc-
tion of a knowledge-based model, we first formulate the problem domain
(as described in Section 2.5) using an approach based on the relationship
between the EGO and one detected OBJ vehicle. In this context, there are
seven maneuver classes:

1. OBJCUTIN: OBJ] moves from the neighboring lane in front of EGO to
the same lane.

N

. OBJCUTOUT: OBJ drives away from the lane of EGO.
3. EGOCUTIN: EGO is driving into the same lane as the OBJ in front.
4. EGOCUTOUT: EGO is driving away from the lane of the OB] in front.

5. OBJFOLLOW: EGO is driving in the same lane behind the OB]J.

)

. LANEFOLLOW: EGO and OB]J are driving straight in two different
neighbor lanes.

7. DONTCARE: This is a complementary class including all of remaining
situations where EGO and OB] are doing maneuver at the same time,
but there is no any potential of collision, e.g. EGO and OB] are driving
from the same track into different neighboring lanes.
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1. OBJCUTIN 2. OBJCUTOUT 3. EGOCUTIN 4. EGOCUTOUT 5. OBJFOLLOW 6. LANEFOLLOW

Figure 4.4: Driving maneuver classes in the output event (according to [14])
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The six relevant maneuver classes are presented in Figure 4.4 where the red
car represents the EGO vehicle and the blue car represents the OBJ vehicle.
If this problem domain based on the described maneuver classes is used
to classify the output event (as shown in Fig. 4.4), we have to specify the
relation between the EGO and the OB]J vehicle. This Vehicle-Vehicle relation
is given by the position of both vehicles and their movement at the moment
of consideration. The situation 1 shown in Figure 4.4 f.e. is defined as
OBJCUTIN, because the EGO vehicle is following the lane on the right side
and the OB]J vehicle is driving from the right lane to the left, while cutting
the EGO-trajectory. Thus, we can establish all of the described maneuver
classes if the position description of both vehicles and their movement can be
specified. The combined maneuver class DONTCARE is a complementary
quantity denoting all other situations where the driving maneuvers of both
vehicles do not carry any collision hazard for the motion of the vehicle pair.
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4.7 Knowledge-based Original Model

In this section the ORIG-Model is described. It represents the prototype
of the knowledge-based Object-Oriented Bayesian Network (OOBN). It is
the basic model for the developed classifiers later. The ORIG model is also
dynamically extended with regard to the trend features for early and accurate
recognition. The performance of all developed classifiers are statistically
evaluated in comparison to the ORIG model in off-line simulations using
the recorded sensor data from the test drives.

4.7.1 Network Logic Layers

Output:
Probability distribution
over Maneuver Classes

E

| Vehicle-Vehicle relation |

I

| Vehicle-Lane relation |

| Vehicle-Lane-Marking relation |

[

| Modeling of Uncertainty |

Input:
Processed sensor data

Figure 4.5: Description of the logic layers (according to [14])

The network structure is built up hierarchically in different logic layers repre-
senting the classes of object-object-information and their causal relationship.
The logic layers are partly presented in Figure 4.6 where the movement of
OB]J vehicle is considered. The logic layer contains BN fragments from the
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original model and is introduced in this work specially for the purpose of
parallelization of computation as described in [28]. The movement of EGO
and OB]J vehicles is modeled by analogy in a similar manner. Both classes
are combined in the layer Vehicle-Vehicle relation in order to specify the
relative movement between the EGO and OB]J vehicle. In the following the
logic layers are explained from top to bottom (see Fig. 4.5).

utput Maneuver Classes ‘
‘ Vehicle —Vehicle relation

Vehicle —Lane relation ’

ehicle —Lane- Mm\

INTENTION RIGHT.CROSS,

Basic Hypothesis

““ S e ’

Figure 4.6: Network logic layers of the OBJ vehicle part

As described in Section 4.6, we formulate the output event using the de-
fined maneuver classes which are grouped as states of the output variable
HQMVT (High Quality Movement). HQMVT is conditioned to the parent
nodes QMVT and POSDESCR denoting the relative movement and position
between the EGO and a OB]J vehicle.

QMVT denotes the relative movement between EGO and OB]J vehicle. It
is modeled using the state pair (movggo,movppy), where movgco,0p; =
{L,R,G}. The complete set of movement state-pairs for the movement class
QOMVT is given as: LL, LR, LG, RL, RR, RG, GL, GR and GG. L= left,
R= right and G= straight (as show in Fig. 4.7) are states from the parent
nodes EGO.LC and OB]J.LC denoting the Vehicle-Lane relation in the lower
abstraction level. LL means e.g. that both EGO and OBJ are moving towards
the lane on the left side, whereas LR means that EGO is moving towards
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the lane on the left side and OB]J is moving towards the lane on the right
side at the same time. Because of the knowledge-based modeling and the
symmetrical states combinations, the initial CPT of QMVT is approximately
given as identity matrix (as shown in Fig. .2).

G
L R
L R

Figure 4.7: Relative Movement between EGO and OB] (according to [14])
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In addition to the movement class QMV'T, the relative positioning of OBJ
towards the EGO vehicle is modeled by the variable POSDESCR which con-
sists of three states: POSLEFT, POSINFRONT and POSRIGHT. POSLEFT
(POSRIGHT) means that OBJ vehicle is located left (right) in front the EGO
vehicle whereas POSINFRONT indicates the positioning of OB]J in front of
EGO on the same lane (as shown in Fig. 4.2). POSDESCR has no parent
node because the data of the position index are calculated by the fusion
and provided as evidence to the BN. The prior probability distribution of
POSDESCR is initialized with uniform distribution. The occurrence fre-
quency of the three relative positions should be given as equally probable
and not weighted from the beginning which would influence the decision
of the BN in the case that no observation of the relative position is given as
input data.

As described before, the probability distribution of the defined maneuver
classes in HQMVT is conditioned to the states of QMVT and POSDESCR.
The conditional dependency is given as CPT (of HQMVT) which is modeled
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based on expert knowledge. A part of the CPT is presented as example in
Figure .1. First, we have the parent configuration that the OBJ vehicle is
left in front the EGO vehicle (POSLEFT). Based on logical conclusion, we
can determine the probability parameters in relation to the defined states
of relative movement. Situations belonging to the complementary quantity
DONTCARE are e.g., if both vehicles are moving in the same direction (LL,
RR) or in different unrelated directions (LR, RL, RG, GL). The situation, that
EGO vehicle is moving left and the OBJ vehicle is driving straightly (LG), is
defined as EGOCUTIN. If OB]J vehicle is moving right and EGO vehicle is
driving straightly (GR), we assign the case to OBJCUTIN. If both vehicles
are moving straightly (GG), it is defined as LANEFOLLOW. Furthermore,
an observation can also be given as likelihood distribution, i.e. the situation
can not be clearly allocated. If the relative movement QMVT is given as likeli-
hood distribution: QMVT(LL = 0%, LR = 0%, LG = 70%,..., GL = 30%, ...)
in the case that OBJ vehicle is left in front the EGO vehicle (POSLEFT), we
obtain an uncertain statement in the output event as probability distribution:
HQMVT(DONTCARE = 30%,...,.EGOCUTIN = 70%).

In the logic layer of Vehicle-Lane relation we have two separate variables
with identical states for EGO and OB]J vehicle EGO.LC and OBJ.LC. Both
variables are modeled using the states: L, R, G, denoting the driving direc-
tion of left, right or straight with regard to the current lane of motion. These
three states are conditioned to the Boolean states in the parent variables
denoting the vehicle-lane marking-relation.

The variables LEFT.CROSS and RIGHT.CROSS in the layer of vehicle-lane
marking-relation summarize the calculation results of the input data into
Boolean statements. LEFT.CROSS (RIGHT.CROSS) denotes the probability
of crossing the lane marking on the left (right) side of the considered vehicle.

In the input layer we have the basic hypotheses (as shown in Fig. 4.8) evaluat-
ing the situational characteristics including their measurement uncertainties.
It consists of three basic hypotheses: LE (lateral evidence), TRA] (trajec-
tory), and SAFE. Each of them is modeled as an object-oriented network
fragment (OONF). LE provides influence results on the lateral dynamics
based on the situation features OLAT and VLAT from the current input
data. TRAJ is a model of lane change trajectory. Its influence is based on
the combined evidence from the features: the yaw angle (PSI), the maximal
exploitable acceleration (ALAT) and the time to lane cross (TLCR). SAFE
provides reasoning on the possibility of a maneuver by influence based on
the free accessible space which results from a grid based modeling approach
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(variable OCCGRID, see Section 4.7.5). Besides these original fragments
of [14], an additional fragment Rel/Dyn is developed for the modeling of
the longitudinal dynamics (X,;, V;;). Considering the relative longitudinal
distance and velocity between two vehicles, we calculate the intention of a
vehicle in a particular situation. This model is based on the radar data up
to a distance of 200 meters. Using this model allows conclusion even on
the front vehicle’s relative dynamic due to a front-hidden vehicle (see Fig.
4.2). Thus, LC intention can be recognized even before the vehicle starts
to move towards the lane marking. However, the statement provided by
REL_DYN is only about the driving intention of a vehicle, i.e. if a vehicle
is driving steadily closer to its front man, a lane change would be required,
which does not mean, that the maneuver is initialized. Thus, we separate
this fragment from the upper layers and evaluate its event separately. In
the following subsections, detailed description of the OONFs in the input
layer is presented, which is necessary for the understanding of the further
chapters.
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Figure 4.8: Basic hypothesis (according to [14])
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4.7.2 Uncertainty

The maneuver recognition represents a task of the type reasoning under
uncertainties with heterogeneous data which are acquired from fused multi-
sensors measurements and thereof computed situation features by physical
models. All fused and inferred data have naturally inherited uncertainties
due to the sensor noise and the model uncertainties. Thus, the treatment of
uncertainty of the input data is an important modeling task [14].

Figure 4.9: Modeling of uncertainty (according to [14])

Figure 4.9 shows the causal modeling taking care of the uncertainty in the
input data. It consists of 3 variables: SIGMA, MESS and REAL, where the
sensor-reading MESS of any measured variable is conditionally dependent
on random changes in the expected input value REAL and the precision
of its measurement given by the variance SIGMA. Variance represents the
sensor noise which is assumed as a zero-mean Gaussian random process.
Thus, the CPT of MESS is initialized as normal distribution of the expected
value and its standard deviation:

P(MESS|REAL,SIGMA) = N(REAL,SIGMA)

In principle the calculation of P(REAL|MESS,SIGMA) is reversed due to
the reversibility of the Bayesian Theorem. The probability distribution of
the expected value (REAL) is inferred from the sensor-reading and the
sensor disturbance which are obtained as evidences from the sensor fusion
algorithm of a Kalman Filter.

The described principle of error estimation is applied in all modeled BN
fragments while inferencing on the basic hypothesis (as mentioned in Section
4.7.1). They are described in the following subsections. The uncertainty
treatment completes the set of situation features and improves the quality of
input data used for the reasoning.
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4.7.3 Lateral Evidences

Lateral Offset Lateral Velocity

(a) LE hypothesis [14] (b) LE model

-
OLAT

Figure 4.10: LE Fragment, where the basic hypothesis (a) and the Bayesian
model (b) are presented (according to [14])

The LE fragment (Fig. 4.10) is one of the basic motion hypothesis to model
the Vehicle-Lane-Marking relation. There are two variables V_LAT_MESS
and O_LAT_MESS denoting the situation features of lateral velocity and
offset according to the transformed coordinates for the description of the
course of lane marking. Both measurement quantities are computed by a
street course model based on the approach of Euler spiral. The parameters
of the clothoids are approximated using a polynom of 3rd degree in order to
compute the course of the lane marking which is related to the data of the
OBJ vehicle given in the coordinate system fixed to the EGO-vehicle. The
derivation of the model equations is described in detail in Section 4.2.2.1
in [14]. The variables V_LAT_SIGMA and O_LAT_SIGMA denote the
measurement uncertainty. Thus, the expected input values are given as
normal distribution of the computed situation features (OLAT_MESS and
V_LAT_MESS) and the standard deviation. Due to the range of the mea-
sured value and the standard deviation, there are 30 states in OLAT_REAL
and VLAT_REAL, 32 states in OLAT_MESS and VLAT_MESS, and 24
states in OLAT_SIGMA and V_LAT_SIGMA. The number of states have
been selected in order to provide high accuracy of inference results and
smooth change of probability between the states. The smooth change has also
an effect on the visualization of maneuver recognition (according to [14]).
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The output hypothesis variable LE provides a Boolean statement about the
probability of crossing the lane marking. The relation between the lateral dy-
namics of the vehicle (given as distributions in the expected values) and the
lane change probability is modeled using sigmoid functions as initialization
of the probability parameters given in the CPT of the variable LE:

P(LE|OLAT_REAL, V_LAT_REAL)
So Sy
5y + ¢MoOLAT_REAL ~ g " om,-VLAT_REAL

The conditional probability distribution in LE is given by the multiplication
of the two sigmoid functions representing the probability function of lateral
offset and velocity. The parameters s,, m1,, sy and m, denote the shifts and
slopes of the sigmoid curve and characterize the features of the sigmoid
function. The sigmoid function is transferred into CPT by discretization (as
shown in Fig. 4.11). The initialized probability parameters are learned from
data using the Expectation Maximization algorithm.

VLAT_REAL -1--0.9 -0.9--0.8

OLAT_REAL -1--09 |-09--0.8 -1--09 | -0.9--0.8
true 011 012 O1n O1(n+1)
false 6,1 05, On O2tn+1)

Figure 4.11: Representation of the CPT of the variable LE which is condi-
tioned to the states (value ranges) of OLAT_REAL and VLAT_REAL
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4.7.4 Trajectory

Maximal exploitable acceleration Yaw angle Time to Lane Cross

ALATmax A_LAT_REAL
TLCR el
—
iw/ & G A G

(a) TRAJ hypothesis (b) TRAJ model

Figure 4.12: TRAJ Fragment, where the basic hypothesis (a) and the Bayesian
model (b) are presented (according to [14])

In contrast to the clothoids-based concepts in the hypothesis LE, TRA] uses
a trajectory-based lane change model where the temporal information is
calculated and taken into account. The lane change trajectory is modeled as
a polynomial of third degree [14]:

y=fie(x) =03 (x—x)° + a2 (x—x5)> + a1 (x—x5) +ag,
X € [x5,xs + D],

where xs denotes the current position of the vehicle, D is a defined range
in which the lane change trajectory is approximated by extrapolation, and
the parameters ag, a1, a2, a3 are estimated on the basis of the last n detected
positions of the vehicle. This model is described in more detail in Section
4.2.2.2 of [14].

As a result of the physical model, three measurement quantities: TLCR,
ALAT and PSI are derived as situation characteristics. TLCR is the esti-
mated time until the vehicle is predicted to cross the lane marking. ALAT is
the computed maximal exploitable acceleration. PSI is an angular parameter
which denotes the orientation of the vehicle inside the lane according to the
transformed course of the lane marking.

The network structure of TRA] is very similar to the LE fragment. The
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given features are modeled as normal distribution of their measured values
and standard deviations. The output is modeled as discrete Boolean vari-
able which is conditioned to the computed distributions of the expectation
variables named as ".._REAL". The CPT in the output variable TRA] is
initialized by the multiplication of the sigmoid functions (similar to the
variable LE as described in Section ).

4.7.5 Occupancy Grid

Time to enter Distance to enter Time to exist Distance to exist

=

OCCGRID_TTD

Figure 4.13: OCCGRID Fragment (according to [14])

OCCGRID is a model for free space analysis which infers on the possibility
of a lane change maneuver by evaluation of the drivable space. The model
combines the temporal and distance analysis with occupancy grid. In this
context, a 3 x 3 occupancy grid is constructed for each detected vehicle
where the vehicle is in the middle of the grid. Each cell is built by the
reference points (X,.f, Yrer) as well as the length and width of the cell. The
status of a cell is defined as either free or occupied and its probability is
inferred from the evidences on the time TTE and distance STE up to the
entry into the cell as well as the time TTD and distance STD up to the exit
from the cell (see Fig. 4.13). The entry and exit times are again determined
from the fused measurement data with respect to the distance (STE and
STD) as well as the velocity v,,; and the acceleration a,,; relative to the
considered cell. The relation is computed using the functions representing
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the kinematic motion of the vehicle [14]:

1
5 Al TTE? + v, - TTE—STE =0,

% -y - TTD* 40, - TTD — STD =0 .
In order to categorize a cell as a free space to finalize a maneuver possibility,
the entry and exit times as well as the corresponding distances must be
greater than the predefined threshold values. A detailed description about
the physical model of the hypothesis OCCGRID is given in [14].

The BN model of OCCGRID consists of four parts. Here, each of the time
and distance of the entry and exit of a cell are calculated under consideration
of the measurements uncertainties. The inference results are combined in two
Boolean variables: OCCGRID_TTE and OCCGRID_TTD, which are again
modeled using sigmoid functions. The output variable OCCGRID is simply
a logic based statement, i.e. if both OCCGRID_TTE and OCCGRID_TTD
are true, then the cell is defined as free (to drive in).

4.7.6 Relative Longitudinal Dynamics

In the hypothesis REL_DYN we use the radar data to characterize relative
longitudinal dynamics between two successive vehicles driving on the same
lane. The idea here is based on the human reasoning of driving maneuvers.
When a vehicle is driving faster than its front vehicle, the probability of
changing the lane becomes very high due to the intention of keeping the
driving velocity by passing the front vehicle. This intention becomes clear
if the vehicle approaches its front vehicle consistently without reducing its
speed, otherwise it would drive on a collision course. In addition, the long
range radar provides a view horizon up to 200 meters which allows the early
recognition of a driving intention.

The model of REL_DYN (see Fig. 4.14) uses the same handling of un-
certainties as the basic hypothesis described in the previous subsections.
This model is constructed in the work of [24]. Instead of lateral features,
the measurement data of relative longitudinal distance and velocity are
propagated. The causal relation between the output variable REL_DYN
and the input evidences is modeled using fuzzy logic instead of sigmoid
functions. In this context two additional variables REL_DYN_V_REL_OB]
and REL_DYN_X_REL_OB] are introduced for the data fuzzification using

"non

the linguistic variables "close", "comfort” and "far" as qualitative categories
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denoting the statement of the relative distance X_REL, and "faster", "compa-
rable" and "slower" representing the categories of relative velocity V_REL.
The CPT in the output variable is given by the defuzzification where the
qualitative categories are related to the driving direction LEFT, STRAIGHT
and RIGHT using pseudo-trapezoidal membership functions. The parame-
ters are chosen in regard to the driving praxis, that an overtaken maneuver
is represented by a lane change to the left, whereas the vehicle leaves the
faster moving (left) lane by slowing down and changing to the right.

Relative longitudinal velocity Relative longitudinal distance

REL_DYN_V_REL )( REL_DYN_X_REL

Figure 4.14: Bayesian network fragemtent, modeling of the relative longitu-
dinal dynamics (according to [24])

In the logic layers, we combine REL_DYN with somewhat modified free
space analysis to form the hypothesis INTENTION for the calculation
of the lane change intention. The modified modeling for the free space
analysis checks the suitability of a gab between two neighbor vehicles. This
is performed by evaluating the safety features for longitudinal relative
dynamics: the relative velocity (V_REL of FRONT and BACK) and time
to collision (T_REL of FRONT and BACK), as a relation to the nearest
vehicles in the front and behind on both the left and right lane. Thus,
Maneuver Advice proves whether the lane change is desirable or not and if
the necessary safety precautions, given by availability of a gap, are fulfilled.
Both requirements are based on the longitudinal dynamics of the considered
vehicle and its surrounding traffic participants. A detailed discription of
the modeling approach using fuzzy logic for the calculation of the driving
intention based on the variable REL_DYN is given in the thesis [24]. We use
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this fragment in this thesis as an additional output of the BN to visualize
the calculation of the relative longitudinal dynamics for the purpose. We do
this for the purpose of evaluating the behavior of this model such that we
could combine both modeling approaches of relative lateral and longitudinal
dynamics for special use cases in the future.
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5 Learning of Probability Parameters in
Static Bayesian Network

Given the initial static BN model with clearly defined inputs and outputs we
want to find a set of (most) suitable probability parameters and a standard
probability threshold such that the requirements of accurate and early recog-
nition of the defined maneuver classes are fulfilled. Given the ground-truth
data set (see Section 4.5.1) we use methods of supervised learning which is
based on two concepts: classification and regression. Classification denotes
the data-based allocation of the most probable output (event states) values to
the corresponding input evidences. Regression is used to obtain an accurate
prediction of the development of the target variables over time. We use
the software tool HUGIN as modeling, learning and test environment. The
improved models are later implemented into the C-framework of the image
processing program. The results are evaluated off-line by simulation and
on-line by test driving in the real highway traffic.

To do the classification the "EM algorithm for graphical association models
with missing data" [18] is used which is explained in Section 2.4.3. There
are two different ways to perform the EM-learning. We can implement the
algorithm to the complete BN-model including all evidence, hypothesis and
event variables. In this way we are searching for an allocation between the
input variables denoting the sensor measurements and the output probability
distribution in the output event HQMVT which infers on the maneuver
classes to be recognized. The second way is only to classify the binary
problems in the input hypothesis: LE, TRA] and REL_DYN.

In the case of learning knowledge-based models, we only learn the input hy-
pothesis variables which have the task to evaluate the input data containing
the situation features. The parameters in the input hypothesis variables are
directly dependent to the frequency of observations in the data. The event
variables are modeled using logical conclusion of expert knowledge where
the parameters should not be determined by the frequency of observations.
Therefore, we use the second method and carry out the EM-learning for
the fragments: LE and TRA]. Both hypothesis denote the real movement
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and the orientation of a vehicle in relation to the lane marking which are
consistently observable. The hypothesis OCCGRID and REL_DYN specify
situation features which are not consequently observable. Either the free
space criteria or the relative longitudinal dynamics (between front and front-
hidden vehicles) are dependent on a third vehicle which is not always given
in the driving scene. We do not perform the EM-learning on those two
hypothesis variables since the corresponding data are not consistent.

In the following sections the procedure of supervised learning using EM
algorithm is described. First we process the data such that the collected
data are separated into LC- and Follow-classes and labeled for the counting
issues of the EM algorithm. About 70% of the labeled data is used as
learning data set and the rest is used for evaluation. Moreover, we use
the sigmoid functions to initialize the CPTs. The sigmoid parameters are
optimized due to the performance criteria: accuracy and timegain. We
use the method of multi-objective optimization which is implemented in
MATLAB. Given the knowledge-based model, the labeled learning data set
and the optimized initial parameters, we perform the EM-learning in the
software tool HUGIN to determine the probability parameters in the CPTs
by counting the frequency of corresponding observations.
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5.1 Data Labeling

As described in the previous section (Sec. 4.3), the collected data during
the test drive are stored as individual driving sequences. Each sequence
contains 30 seconds of measurements and can be simulated off-line in
the image processing framework. The stored images are played as video
sequences in the same frequency as the measurement frequency (60 ms) of
the stereo camera. Simultaneously the sensor measurements and the inferred
probabilities of the corresponding classifiers are recorded. For each formed
vehicle-pair-relationship between an EGO vehicle and an OB]J vehicle with a
specific ID number the recorded data is organized in an individual sequence.

LE OLAT VLAT
FOLLOW, labeled as false 1.07 021
false false 1.15 0.03
false 1.10 -0.09
?
?
Transitional process ‘;3) ?
from FOLLOW to LC, 3| ?
labeled as 3 ?
empty spaces ? . .
? 0.51 -0.51
? 0.58 -0.62
true 0.45 -0.79
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LC, labeled true LMT LMT
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true LMC LMC

Figure 5.1: Labeling strategy as preparation for the EM-learning

We implement a labeling strategy to divide each data sequence into the set
of LC data and the set FOLLOW-real-data. For this purpose we specify two
fundamental issues to describe a LC maneuver based on our definition of
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5 Learning of Probability Parameters in Static Bayesian Network

LC (as given in Section 4.5). The first is called LMC (Lane-Marking-Cross)
which denotes the time point where the coordinate system is currently
transformed into the target lane coordinates. The second is called LMT (Lane-
Marking-Touch) where the time point is marked when the considered vehicle
touches the Lane-Marking. At the end, we include the clearly separated data
sequences into a single Excel table for learning purpose.

To support the EM algorithm, an additional column corresponding to each
output (hypothesis) variable of the BN-fragment is created. We label explic-
itly the moment of LMT as the start of the ending phase of a LC maneuver.
We follow the strategy that a LC sequence is labeled 10 cycles before the
time point of LMT as true. The period ends up to the time point of LMC
where the middle of the front bumper of the vehicle crosses the lane marking
which is recognized by our system as transformation of lane coordinate. We
can not specify the actual begin of the LC maneuver since we cannot find a
generalization of the driving behavior of different OBJ-vehicles. Thus, we
only label a time point where the LC maneuver has not started (in the most
case). We define this time point as 40 cycles (about 2.4 seconds) before the
LMT. We label the data as false. The gap between the two time points (40
cycles and 10 cycles before LMT) remains blank and should be filled auto-
matically by the Expectation step using the current probability parameters
in the corresponding CPTs. The labeling strategy is illustrated in Figure 5.1.
As result, we labeled about 1000 maneuver sequences and use them as
learning data. It is necessary that the data set is balanced according to
the driving maneuver (LC or FOLLOW). Thus, about 500 sequences are a
LC maneuvers and the other 500 sequences are FOLLOW maneuvers. The
LC maneuver sequences contain processed and labeled data of a recording
time between 2.4 and 6 seconds. The FOLLOW maneuvers are at least 4.8
seconds.

5.2 Multi-objective Optimization for finding an optimal
Initial Guess

Due to the characteristics of the EM algorithm as described in Section 2.4.3,
we need to find an optimal initial guess of the corresponding CPTs. The
primary requirements of early and accurate recognition of driving maneuver
lead to competitive criteria: accuracy and timegain. Thus, we formulate the
problem of finding initial parameter guess of the relevant object-oriented
Bayesian fragments for the EM-learning as a multi-objective optimization
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5.2 Multi-objective Optimization for finding an optimal Initial Guess

problem. We use the strategy of Pareto Optimization and evaluate the
sigmoid functions accordingly to the criteria. Related work is e.g. [13],
where the Pareto-based approach is studied in terms of machine learning
problems. In the following the approach of Pareto Optimization used for the
LE-model is explained.

Wanted is the maximum of accuracy and timegain. The optimization problem
is given as:

max (accuracy, timegain
Szuﬂ’h/sormu( Yr gain) y

where both objectives are determined by evaluating the computed probability
based on the labeled data set. In the design space, we compute the probability
by the multiplication of the sigmoid functions which are used to approximate
the probability distribution in the object-oriented BN-fragment LE to the
measurement values of OLAT and VLAT:

5o So

P(LE = true|VLAT,OLAT) = 5o om VIAT " 5. 4 gno OLAT * (5.1)

The parameters sy, my, So, M, denote the slopes and shifts of the sigmoid
functions. We use an additional probability threshold to support the eval-
uation such that the computed probabilities can be mapped to a binary
statement if the LC is either true or false. The threshold is implemented as
5th parameter which should be determined by the process of optimization
in relation to the evaluation of the functional criteria.

Since the probability P cannot be negative or exceed 100% the constraints are
set as: —P < 0 and P < 1 which simply represents the axiom of probability.
In the case of the LE model, if we implement the search only in the positive
parameter region, the constraints are automatically fulfilled according to the
characteristics of sigmoid function.

The resulting optimization algorithm consists of two computation steps. In
the first step we evaluate the variations of parameter sets from a large scaling
step to a fine discretization. The results of the evaluation are stored into
a table. In the second step we build the set of Pareto Frontier. In order to
find the optimum, we maximize hypervolume in the criterion space and
implement an appropriate weighting criteria. The implementation of the
algorithm consists of the Evaluation and the Optimization-step, i.e.:
Evaluation-Step.

1. Read data sequences.

2. Variation of parameters.
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5 Learning of Probability Parameters in Static Bayesian Network

3. Probability computation to the given parameter and data set.

4. Evaluation of the computed probabilities (mapping between design
and criterion space).

5. Save the results of evaluation, e.g.:
M = [paramy, paramy, params, paramy, threshold, accuracy, timegain).

6. Go to 2 and repeat until the defined region is evaluated.
Optimization-Step:

1. Build the Pareto Frontier (strictly dominated).

2. Compute the hypervolume and implement the weighting criteria.

3. Find the maximum hypervolume.

A suitable weighting criteria is to define a minimum of acceptable accuracy:
accuracyy,;; which restricts the region of acceptance. On the one hand the
criteria can be utilized to reduce the acceptable optimal Pareto set and on
the other hand it can be implemented to the computation of hypervolume
which is in this case the rectangular area under the Pareto Frontier:

timegain
1—accuracypiy *

hypervolume = (TP — TP - accuracy,y;, )

In this context, we search for the maximum of the computed hypervolume
by the use of the weighting criteria in order to find a particular parameter
set which is most suitable according to the given trade-off problem.
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Figure 5.2: Plot of evaluations in the criterion space, using EGO+OB]J data
of 740 maneuver sequences

Figure 5.2 shows the evaluation due to both objectives: accuracy and
timegain in the criterion space where TP represents the number of cor-
rectly recognized maneuver sequences. We use a validation data set of 500
sequences containing 260 sequences of LC maneuver and 240 of FOLLOW
maneuver. Moreover, every FOLLOW sequence contains each one of EGO
and OBJ FOLLOW maneuver. Thus, the number of FOLLOW maneuver is
doubled (480 FOLLOW maneuvers). The total number of maneuver is 740
which is the total number of LC and FOLLOW maneuvers (performed by a
single vehicle).

The y-axis named TP represents the number of correctly recognized maneu-
ver and x-axis timegain denotes the time difference between the recognition
and the time point of LMC. Each plotted point represents the evaluation
result of a unique parameter set. The Pareto-frontier (marked black) rep-
resents a set of potentially optimal (Pareto efficient) choices according to
the trade-off problem, i.e there is no mathematical "better" solution in a
particular configuration within the defined region of acceptance. It means
literally, that you cannot obtain a better solution in the one optimization
criterion without making worse the other criteria.

Furthermore, the plot includes both EGO and OB]J data in which the quality
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5 Learning of Probability Parameters in Static Bayesian Network

of EGO data is better than the OB]J data. It means, we would obtain different
optimal solutions, if we separately use the EGO or the OBJ data. Thus,
different weighting criteria is implemented to support the algorithm for
finding the optimal parameter set. The weighting criteria is an additional
restriction to the acceptable region. It is set 90% for EGO data and 80% for
OBJ data. Because the number of EGO and OB] data sequences is exactly
the same, we set the recognition minimum as mean of both weightings:

recognition,,;,, = 0.85.

Implementing the weighting criteria explicitly to the computation of the rect-
angular area under the Pareto Frontier, we find the most suitable parameter
set conditioned to all of the defined criteria of this optimization problem.
It is marked as a red point in the plot which has a recognition accuracy
of approx. 95% (701 TPs of 740 maneuver sequences), and a timegain of
approx. 0.41 seconds to the time point of LMT. The corresponding optimal
parameter set is for the BN-fragment LE is given as:

Sy = 0.07, my = 8, s, = 109.5, my, = 9.3, Threshold = 0.65

whereas the probability function used to approximate the CPT of LE is given
as:

P(LE = true|VLAT,OLAT) = 5oebomr - 1o5s-saom-

The resulting sigmoid functions is integrated into the C-code of the cor-
responding hypothesis in the C-framework for off-line simulation or for
on-line testing in the test vehicle. The integration is necessary, because we
need to perform the evaluation of network model using the optimized initial
guess besides the MATLAB simulation in order to obtain a subjective feeling
for the performance before we start the learning process.

Since the fragment TRA] also uses sigmoid functions as initial expressions,
we follow the same optimization steps.

5.3 Expectation Maximization Learning

Given the labeled training data set (about 1000 maneuver sequences) of high
quality and the optimal initial guess to approximate the probability param-
eters in the CPTs, we perform the EM algorithm to learn the conditional
probabilities for the both essential hypothesis (LE and TRA]) from the data.
The characteristics of the EM algorithm are described in Section 2.4.3.
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5.3 Expectation Maximization Learning

We use the optimized sigmoid function as expression to approximate the
initial probability parameters of LE conditioned on the discrete states in
OLAT_REAL and VLAT_REAL. For the counting procedure of the EM
algorithm the given expression has to be transferred into a CPT. A additional
experience table is added to each of the state combinations, given in the
CPT. The experience table contains the experience counts which reflect the
number of times that a particular parent configuration is observed. Before
the learning is started, experience tables have to be added and initialized in
each variable where the probability distribution should be determined by
the number of observations.

In the loaded data set we can also recognize the labeling (as given in Fig. 5.1)
which is necessary to assign the states to either true for LC or false for Follow.
EM algorithm counts +1 for each labeled true and +0 for each labeled false.
The empty spaces are counted using the current probability parameters
which specify the occurrence of the respective parent configuration.

The process of EM-learning is controlled using two different abortion criteria.
The first is to characterize a maximum number of iterations such that the
iterative process is forced to terminate if the maximum number is reached.
The second criterion is the definition of the convergence threshold of the
relative difference e between the log-likelihood for two successive iteration
steps:

o logL(n) —logL(n —1)
N logL(n—1) '

The log-likelihood is logarithm of the probability of all counted cases 7

N
log L(n) = ) _log P(7;|©) ,
i=1

where 7 is the number of the current iteration and the sum N of counted
cases is the total number of counted cases given in the data. Log-likelihood
denotes in this context the quantity of information given the current joint
probability. The local maximum is reached if the log-likelihood between two
successive iteration steps is sufficiently small.

For the learning procedure we use the convergence threshold as abortion
criteria since we don’t know how many iteration steps are necessary to
converge to a local maximum. Furthermore, only the conditional probability
parameters of the output variable LE should be learned from data. The
reason is that the frequency of the adoption of a sensor measurement should
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5 Learning of Probability Parameters in Static Bayesian Network

not be specified by the frequency of observations. For the knowledge-based
models we consider the occurrence of a certain measurement value as equally
probable. Thus, the probability distribution denoting the relation of the
variables with the ending REAL (expected value of measurements), SIGMA
(uncertainty of the measurements) and MESS (sensor measurements, given
as evidence) remain normally distributed as before.

In the case of learning the LE fragment, the algorithm converges after five
iterations using the convergence threshold 0.0001. As a result, we obtain
the learned CPT (for the variable LE) which is dependent on the frequency
of the observed parent configurations and their labeling. The EM-learning
procedure for TRAJ fragment is similar as for the LE fragment since both
models are used as basic hypothesis to calculate the vehicle lane-marking
relation.
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6 Trend Analysis for Static Bayesian Network

The approach of static BN naturally restricts the classifier performance due
to the trade-off problem between the two objectives: accuracy and timegain,
since the probability propagation is only based on the calculation of the
currently incoming sensor recording. Consider the clustering plot of lateral
dynamics given in the appendix (as shown in Fig. .7), if we e.g. push the
parameterization of the LE into the blue area denoting the LC maneuvers, we
obtain significant improvement in the timegain but an unacceptable accuracy
in the recognition of FOLLOW maneuvers. Every movement tendency
towards the lane marking introduces a high probability output denoting a
LC maneuver. If we use instead a parameterization in favor of the accuracy,
i.e. the lateral dynamics must exceed a high limitation for the classification of
a LC maneuver. Then as consequence the LC maneuver is always recognized
in the last moment.

In the reality, a LC maneuver typically starts with a phase driving towards
the lane marking before the vehicle touches the lane marking. This so-called
trend behavior must be recorded in the measurement data of lateral and
longitudinal dynamics. It is therefore of great importance not only to use
a snapshot of the recording, but also to keep and follow the data history
in order to obtain a meaningful calculation of features showing a trend
behavior.

In this chapter two trend algorithms: Linear- and logistic regression are
presented which are used as supplements to the knowledge-based static
BN in order to improve the timegain with no or little deterioration in the
accuracy. linear regression is implemented to analyze the trend of the lateral
dynamics. A prediction based on the history of the measurement data is
given as evidence to the static network instead of the current measurement.
Logistic regression is utilized to predict the probability in the LC-layer by
following the development of the probability trend over time.
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6 Trend Analysis for Static Bayesian Network

6.1 Linear Regression

Consider Figure 6.1, where the development of lateral offset of LC-sequences
is plotted using a random chosen validation data set of over 150 LC-
sequences. A (nearly) linear declining trend can be identified in the measure-
ments of lateral distance towards the lane marking (OLAT). The measure-
ment values of OLAT keep decreasing until the coordinate system changes
to the target lane. This phenomenon is also partly observable in the mea-
surement of the lateral velocities (VLAT). However, the trend of VLAT can
be badly traced due to the unstable behavior of the velocity vector. In this
context, we use linear regression to approximate trend history of OLAT and
compute a predicted value using the fitted regression coefficient. We repeat
this at each time step when new measurement data are recorded.

A visual presentation of the idea of linear regression is given in Figure 6.2.
A certain amount of data history of OLAT can be used to fit the parameters
of a linear function which can be extrapolated to predict the development of
OLAT. There are two constraints for estimating the linear model. First, the
range of data history used for the estimation must be strictly limited (<1 s)
in order to ensure the piecewise linearity in the data development. Secondly,
the computation time must be suitable for on-line evaluation.

Lateral Offset

o
3

o

OLAT Mess Value [m]
S
o

0 10 20 30 40 50 60 70 80 20 100
Cycle Time

Figure 6.1: Development of lateral offset of LC data sequences (validation
data set with over 150 LC-sequences)

94



6.1 Linear Regression

Measurement Value [m]
[==]

-0.5

History Prediction

-1
Cycle Time

Figure 6.2: The idea of linear regression

To ensure the limitations of time and computation resources we use the
simplified approach of least square curve fitting to determine the parameters
of the discrete linear model denoting the development of OLAT over time
(according to [20]):

yi=PBo+B1-tite. (6.1)

The scalar dependent variable y; represents the observation of OLAT mea-
surement. We have only one explanatory variable t; denoting the correspond-
ing time point. The constant ¢ denotes the axis section and the regression
coefficient By is the slope of the regression line. Error variable €; = y; — ¥; is
used to model the deviation between the observed value in the given data
group and the computed value: ij; = B + By - t;. Given a data group of the
range 1 saved in a virtual buffer we can fit the parameters of the regression
line by minimizing the quadratic error (according to [20]):

n

mmZe =min) (v —Bo—P1- t)? . (6.2)
i=1

i=1

The algorithm is formulated as following;:
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96

1. Initialize the buffers of ¢; and y;.

. Update the data set y; by the current incoming measurement and

actualize the time buffer for ¢;.

. Computation of the mean of the n scaled time points and the average

of the corresponding independent OLAT measurements:

F— Z?=1 tz’
n 7
= Yiavi
n

. Computation of the regression coefficient B:

s (ti =1 - (yi —9)
i1 (ti — )

P =

. Compute the section constant Bg:

Bo=7—P1-t.

. Extrapolation by defining a suitable prediction horizon T

yr=Ppo+p1-T.

. The predicted OLAT value is given as input evidence to the BN.

. In the next time step the process is repeated from the step two if the

storage is updated by currently recorded data for the same object
vehicle.



6.1 Linear Regression
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Figure 6.3: Accuracy vs. timegain in the relation with prediction horizon
(0-600 ms) using linear regression

The range n of the storage buffer and the prediction horizon T have to
be chosen appropriately. The prediction horizon T must be comparable
to the range n of the data history, e.g. if we use data of last 5 cycles,
the prediction horizon should be maximal 10 cycles. For this purpose the
model is reproduced in MATLAB. Using the approach of multi-objective
optimization (see Section 5.2) to the predicted data set by linear regression
we can find a set of suitable parameterization of #n and T. The buffer size
n is optimally set between 5 and 10 where the data between 5 or 10 times
the sampling frequency (60 ms) are stored into the buffer. The prediction
horizon has significant impact on the performance objectives accuracy and
timegain. In Figure 6.3 the evaluation of both competitive objectives using a
validation data set is plotted in relation with the prediction Horizon. Here,
we set a fixed buffer size n = 5 in the favor of computation resources. A
significant deterioration in the accuracy is seen after 300 mini seconds while
the timegain is growing nearly linearly with increased prediction horizon.
Therefore, n = 5 and T = 300ms would be a possible parameterization
belonging to the optimal Pareto-set.
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Deviation at some turning points,
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Figure 6.4: Deviation between prediction using linear regression (only based
on OLAT) and Motion model (based on the kinematics using both OLAT
and VLAT)

In order to improve the correctness and robustness there are three different
approaches which are developed for the trend analysis using linear regres-
sion. The first approach is to set the axis section ¢ of the linear model to the
current measurement value of OLAT. Thus, the least square estimation is
reduced to a problem with a single parameter, namely the regression coeffi-
cient. The extrapolation (step 6) always starts by the current measurement
value of OLAT:

yf= OLAT(tg)+m-T.

The second approach is to define a set point for an additional evaluation
of the predicted value. This can be done using the kinematic equation to
describe the physics of the kinematic motion of the vehicle and is given as:

OLAT(T) = OLAT(to) + VLAT(ty) - T .

In figure 6.4 both prediction approaches are plotted to a LC sequence of
an OBJ-vehicle recorded in the real highway traffic. We can recognize that
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6.1 Linear Regression

the linear regression keeps the prediction based on the data history even
the curve is turning back in the next moment, i.e. the vehicle is moving
back to lane middle and linear regression cannot follow this turning point
immediately. Thus, we implement the rule: If the deviation between the
predicted value y s by the linear regression and the predicted value OLAT(T)
by the kinematic function exceeds a defined threshold, then the prediction is
dropped, otherwise the predicted value yy is given to the BN:

if (]/f — OLAT(T)) < threshold then
‘ prediction =y ;

else
‘ prediction = OLAT(ty);

end

The third approach is to divide the given set D = {d;,dy,...d,} of data
history of length n in several sections sectiony = {d, }, section; = {d,_1,dn},
sectiony = {(dy_2,dy_1,dn)},..., section, 1 = {dy,dz,... 4y _2,d,_1,d,} with
the length n —k,..,n — 1, where k = (1,..,n — 1) is a specific time point
in the past corresponding to a data value given in the data set. linear re-
gression is implemented to each data section using the prediction horizon
corresponding to the time difference between the first and the last data
value of each section. The results are stored together with the current data
value d, in an additional output-buffer. The values in the output-buffer
are again fitted to a linear function using the linear regression algorithm
to obtain a smoothed predictive value. This approach has two advan-
tages comparing to the classic linear regression. First, there is no need
to find the prediction horizon T since it is automatically related to the
buffer size n. Secondly, the current input value has more impact on the
prediction so that the predicted value is corrected quickly in cases that the
trend is canceled by a turning value. The algorithm is given as following.

fork:=1tondo
resultlk] <— LinearRegression((n —k) : n),T = (n — k), x[(n — k) :
n])

end
prediction < LinearRegression((1: n), T = 0, result);
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6.2 Logistic Regression

Consider Figure 6.5 which shows a typical curve course of the output prob-
ability in the LC-layer describing the Vehicle-Lane relation (BN-fragments:
EGO.LC and OBJ.LC). The red and blue curves denoting the lane change
probability to the left and right sides show a typical sigmoidal behavior
characterized by a growing trend and the constraints: P(t) € [0,1]. This
feature leads to the same consideration as given in Section 6.1 for the linear
regression. Thus, we can implement the trend analysis to predict the output
probability during its growing phase in order to reach the defined thresholds
at a very early time point. In this context we approach the system outputs
for a small time interval ¢ by a logistic growth function given as:

1
P(t) = W , (6.3)

where the parameters y and ;1 denote the shift and the slope of the curve.
The function value f represents a particular time point which is taken from
the discrete time interval ¢ € [ty,..., t,] of n sampling times.
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Figure 6.5: Typical curve course of the output probability [27]

Probability P(t + T) of a certain future time point ¢ + T can be extrapolated
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6.2 Logistic Regression

analytically by determining the two free parameters By and B; from the
recently obtained output probabilities P(t). Because of the noise of the
measured values as well as the fact that the function is only an approximation
of the system output we can exclude an algebraic determination of the two
free parameters By and p1. Instead, we use a regression approach to estimate
the parameters.

First we transform the approximation function into a linear function such
that the parameters By and B; as well as the function variable t are linearly
related to a function value P(t):

1
= _ 1 = pPotphut
70 1=e¢e ,
1—P(t) _ Botprt
P(t) ’

log(%li)(t)):ﬁowm,

P(t) = Po+pi-t.

Then we use the simplified approach of linear regression to fit the indepen-
dent regression coefficient f; and use it to compute the dependent parameter

Bo:

P(t)y=Po+pi-t,

p— Liti
YR
P(l’) = + ’
g, _ Dialti =0 -(P(t) = P(1)
' R
Bo=P(t)—p1-F.

After the parameter fitting, the function P(t) is transformed back to the
logistic function P(t) which is then extrapolated using both fitted parameters
Bo, B1 and a defined prediction horizon T:

1

P = o) -
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The system architecture of logistic regression is similar as for the linear
regression. We use a virtual buffer of size n to store the history of obtained
probability values. The buffer is updated whenever a new probability value
is computed by the BN in the same output. We use this approach to predict
the outputs from the nodes EGO.LC and OB]J.LC. The predicted probabili-
ties are forwarded to the next logic layers to obtain an earlier recognition
of the positive (LC) class: OBJCUTIN, EGOCUTIN, OBJCUTOUT, EGO-
CUTOUT, from the states modeled in the output event HQMVT.
Compared to the original output probability both regression approaches
show a improvement in timegain with a deterioration in the recognition
of FOLLOW maneuver. According to the chosen prediction horizon and
buffer size we obtain a different result. We again use the Pareto-optimization
approach to find out a suitable prediction horizon. The prediction horizon is
set 10 time cycles (about 600 [ms]) for logistic regression. For linear regres-
sion we use the third approach where the prediction horizon is dependent
on the buffer size. We simply follow in this case the logic that the more
information we store the more we can set the prediction horizon. Thus, we
optimize the buffer size n which is given as 5 values for the approach using
linear regression.

Compared to the linear regression, logistic regression has a significant
improvement in the timegain since we predict the probability in its growing
phase. However, we observe bad robustness using logistic regression in the
case of FOLLOW maneuver. Every small disturbance, where the probability
values are growing for few cycles, is magnified by the prediction. We try
to solve this problem using a output filter to smooth the prediction. We
test different filter approaches such as PT1 filter, local regression filter and
moving average filter. Since the difference between two time steps should be
constantly given as the cycle time (60 ms) we implement the moving average
filter which causes a delay in the prediction by relating the prediction to the
history of the outcome probabilities. A suitable design is given as:

P(t) = 3 Pto) + 3 -P(t1) + ¢ - P(2) + 5 -P(t3)
The filter is designed smoothing the current prediction by the relation to
three predicted values from the last three times steps in the past. Thus,
every predicted value from the logistic regression is stored into a additional
storage buffer of size four. The probability values from the storage buffer
are weighted differently according to the time point of recording. We use
the moving average filter because it has a comparable performance as the
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other approaches. It is very simple to implement and does not require a lot
computation and storage resources.
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7 Extension to Dynamic Bayesian Network

The above sections 4.7, 5 and 6 described the approach of static BN using
the current incoming data. The data are processed and predicted by linear
regression to make a statement about the driving intention of the EGO
and of the detected OB]J vehicles. In addition, the output probabilities are
predicted using logistic regression to perform a even earlier recognition of a
LC maneuver.

In this chapter, a extended approach using DBN is presented where the trend
analysis is encapsulated into the network by extending particular fragments,
showing trend features, to dynamic fragments. DBN model performs the in-
ference based on information of past and presence. It takes into account the
temporal relationships between successive system states, which are utilized
for the trend analysis over consequent time steps in a big set of time series.
The main advantage of DBN models is the compensation of missing mea-
surement value. The current measurement is smoothed by the temporal
reasoning. Thus, the recognition of traffic maneuvers using DBN has a better
robustness compared to the static BN. In order to improve the timegain of
recognition, it is possible to implement single-step-ahead or even multiple-
step-ahead time series forecasting based on the temporal reasoning of multi-
ple time steps in the past. The disadvantage of DBN is the high complexity
by adding more than one time slice which requires more computation time
and memory space compared to the static BN.

7.1 Dynamic Extension of Lateral Evidence

There are three hypothesis (LE, TRA] and REL_DYN) in the developed
knowledge-based BN model which naturally exhibit trend features and can
be extended to dynamic fragments. Because of the computation resources
and the quality of the data we only implement the dynamic extension to the
BN-fragment LE which indicates trend features and a high data quality. The
data of REL_DYN are not given consistently since the model considers the
relative longitudinal dynamics between two vehicles following each other in
the same track and this situation is not always present. The data consistency
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problem is caused by the fact that the front-hidden vehicle can be lost from
time to time. This occurs when it drives out of the detection field of view
of the sensors. The physical model of TRA] is based on the extrapolation
of the driving trajectory which already includes the tracking of the past
positions of the vehicle for the calculation of the situation features TLCR,
PSI and ALAT (see 4.7.4).

Temporal clones of one time slice

[ 0.OLAT_REA TOVLAT_REAL @ ]

Figure 7.1: LE_DBN

Figure 7.1 shows the two steps time-sliced (2T-DBNs) LE_DBN fragment.
It is characterized by the LE model over the feature variables OLAT_REAL
and VLAT_REAL. These features represent the expected values which
are inferred from the measurement variables (OLAT_MESS, VLAT_MESS)
and their uncertainties (OLAT_SIGMA, VLAT_SIGMA). In addition the
state ALAT denoting the currently maximal possible acceleration is added
to complete the kinematic model of the movement process. Exactly one
Temporal clone of each variable is created to model the successive process
over time. The extended dynamic model satisfies both the first-order Markov
assumption (see equation 2.3) that the next state is dependent only on the
current state, and the stationary assumption that the transition probabilities
are independent from the actual time step where the transitions is taking
place. The relation between the time slices are represented by the transitional
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7.1 Dynamic Extension of Lateral Evidence

probability table (TCPT) which is initialized for the LE_DBN fragment using
normal distribution A (i, o) (according to [27]):

T1.OLAT_REAL ~ N(T0.OLAT_REAL + T0.VLAT_REAL x AT, 0.5%),
T1.VLAT_REAL ~ N(TO.VLAT_REAL + TO.ALAT_REAL % AT, 0.5%),
T1.ALAT_REAL ~ N (TO.ALAT_REAL, 0.5%) .

The mean value y is approximated by the expectation given by kinematic
formula:

S(Ty) = s(To) +0(To) - AT+ 5 -a(Ty) - AT,
o(Ty) = s(To) - AT + 3 -a(To) - AT .

The (lateral) acceleration factor is neglected for OLAT since its quadratic
is near zero. The standard deviation ¢ is initialized with 0.5 which is
resulted from based on knowledge-based data analysis. The distribution
is implemented for each particular combination of states within the given
ranges which are discretized by 10% variation and truncated on the interval.
Truncation means to cut the co-tails of the normal distribution and to define
the function values only on the predefined range:

e O_LAT_REAL € [-1,2],
e V_LAT_REAL € [-1,2],
e A_LAT_REAL € [0,15] .

For the initialization of the TCPT we follow in this context the basic idea that
we use the most suitable knowledge-based relation given from the physical
and logical modeling since. Based on this initialization we use machine
learning to determine the relation between temporal nodes.

Furthermore, in the LE_DBN fragment (Fig. 7.1) we have modeled explicitly
a variable called CYCLETIME which represents the sampling frequency of
the stereo camera. This additional variable is necessary for the modeling
of time difference AT between two time slices. The currently recorded data
must be correct synchronized between the time-slices in the DBN at every
time step.
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7 Extension to Dynamic Bayesian Network

7.2 Learning of Parameters in a Dynamic Bayesian Network
Fragment

For the learning procedure of DBN we need to preprocess the learning
data set. In the case of learning LE_DBN we clone the relevant variables
OLAT and VLAT in the data set where a new column for each variable
with measurements values of the corresponding time step from the time
series is created. After that the data set is transformed into the longitudinal
representation such that each line contains an entire sequence (see Fig.
7.3). The columns represent the variables and their temporal clones, e.g.
OLAT is extended to OLAT(t;), OLAT(tp), OLAT(t3)...OLAT(t,), where
n = length(Seq;) (as shown in Fig. 7.3). Furthermore, the entire sequence
must fit into the model as a single case, i.e the model has to be fitted with m
time slices (=temporal clones) for each of the variables OLAT and VLAT,
where m is the maximal length of the given sequences.

We use two methods to learn a DBN fragment. The first is using the EM-
learning (according to [18] and [12]). In this context the dynamic LE fragment
is rolled out into a corresponding static BN model by adding the same
number of time slices given in the data set. Thus, it can be treated accordingly
by using the EM algorithm to determine the probability parameters in
the TCPTs between time slices as well as in the CPT of the hypothesis
node LE which is conditioned to the evidence nodes (T1.OLAT_REAL and
T1.VLAT_REAL).

An alternative method is using the Adaptation approach (according to [12]
and [17]). For the learning of the LE-DBN fragment, we define a fixed model
of two time steps (2T-DBN)), i.e a single temporal clone of each input variable
(OLAT, VLAT, ALAT) is created. The process performed by the Adaptation
is to update the parameters of all states X in a TCPT for a particular parent
configuration 7r; whenever an observation of this parent configuration is
given as evidence. The sequential updating process is based on statistical
counting. Consider the generalized representation of a TCPT given in Figure
7.2, where the states (x1,...,x,) and the parent configurations (7y,...,7T; ) are
given. We add each a row to store the current sampling size (sy,...,s,) and
the fading factors (q1,..., 4m ). The current sampling size are given as the sum
of counts s; = Ny + ... + Nj; for a particular parent configuration 7r; where a
count N is the counted frequency of the state x; given in the column. When
for example a observation P(e|7;) of state x; for the parent configuration 7;
is given as evidence, the Adaptation-algorithm updates e.g. for the states
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7.2 Learning of Parameters in a Dynamic Bayesian Network Fragment

of the variable T1.OLAT conditioned to a certain parent configuration 7;
(given in this case by the states of T0.OLAT and T0.VLAT):

P(TLOLAT = x;|7;) := N"S%i(i'"’) , (7.1)
1 1

for the state x; in the column of the parent configuration 7r; and for all other
states x;,j € [1,n] \ k in the same column:

Ni - gi
P(T1.OLAT = xj|m;) i:= ——— . .
( xj|7t;) siqi+1 (7-2)

States\Config. Ty T, T

X1 P(xq|my) | P(x]my) P(x1|my,)

X2 P(xy|my) | P(xz|m) P(xz|mm)

Xn P(xn|ﬂ1) P(x”|ﬂf2) P(xnlﬂ'-m)
experience table $1 S5 Sm
fading table qq q> Im

Figure 7.2: Generalized representation of a TCPT by inserting the experience
and fading table for adaptation

The way of counting is done at each time step in and for all sequences
in the transposed data set (see 7.3). As result we obtain a TCPT which is
particularly configured for the given data set.
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7 Extension to Dynamic Bayesian Network

Sequence | Time | OLAT | VLAT Adaptation (Sequential Updating) between time steps

1 t, | 05 | 003 1 l 1

1 tz | 04 | 005 Sequence | OLAT(t;) | VLAT(t;) | OLAT(t,) | VLATIt,)
1 ta | 04 1 01 1 05 0.03 0.4 0.05
2

Figure 7.3: Data transposition for the Adaptation

In this work, we obtain better results by combining both methods to deter-
mine the quantitative part (parameters) of the DBN fragment. We use the
EM algorithm to learn the causal relation between the information variables
in the input and the hypothesis variable (LE) in the output. The learned CPT
is exported and inserted into the adapted model. The reason of combining
these two methods is that the EM algorithm fits better on the developed
labeling strategy by using empty spaces to label the uncertain data. For
the transposed data set, it is more efficient to update the parameters by
adapting the measurement data at every single time step instead of rolling
out the network to estimate the relation between the time steps using the
EM algorithm.

Moreover, it is necessary that the TCPT is adapted for each vehicle side
(EGOLEFT, EGORIGHT, OBJLEFT, OBJRIGHT) separately using the mea-
surement data labeled for the vehicle side. The reason is, that the data
measured for the successive driving process in highway traffic are different
according to the type of vehicle (EGO or OBJ) and to the driving direction of
the vehicle (LEFT or RIGHT). A maneuver of crossing the lane to the left is
in the most cases (in our recorded data set) a overtaking maneuver where
the velocity is increasing and the dynamic trend builds up very quickly
compared to a maneuver of crossing the lane to the right side. A LC to the
right side is usually accompanied by decreasing velocity as we observe in
the recorded data sequences. On the highway a LC to the right is usually
a movement from a faster lane to a slower lane. Moreover, the different
data quality of EGO and OB]J vehicle must be also taken into account for
the dynamic models. If we consider the clustering plots .6 and .7 in the
appendix, the data denoting FOLLOW maneuver of the OB] vehicle covers,
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7.2 Learning of Parameters in a Dynamic Bayesian Network Fragment

because of the measurement noisy, a much larger area compared to the data
measured from the EGO vehicle.

If we learn the CPT between the information variables and the hypoth-
esis variable, it is not necessary to divide the fragment for each vehicle
side, since we consider in this case a static binary classification problem
where the uncertainty in the data is specified in the modeling (see Section:
4.7.2), but not the dynamic trend. If we want to take the dynamic trend
into account and adapt the TCPT for describing the relationship of suc-
cessive time steps, we have to consider the difference in the development
of the measurement data for different vehicle sides. Therefore, we divide
the LE_DBN fragment into LE_DBN_EGOLEFT, LE_DBN_EGORIGHT,
LE_DBN_OBJLEFT, LE_ DBN_OBJRIGHT and adapt the TCPT for each
vehicle side using the separated data set. The resulted classifier is called
DBN_LE4fragm which contains four LE-hypothesis C-files for each vehicle
side including the differently adapted TCPTs (corresponding data for each
vehicle side) and the same CPT which is determined using the EM-learning
(entire data including four vehicle sides).
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8 Data-driven Model

Development of self-learning and -diagnostic systems becomes an essential
subject in the latest trend in automotive processing of streaming data. Thus,
in order to address these challenges the idea of running an alternative com-
pletely data-driven model in parallel with the knowledge-based models is
considered in this chapter. A Naive Bayesian Network (NBN) is constructed
under the assumption that each information variable is only dependent
on the selected target variable (according to [27]). As typical for NBN, all
information variables in the input layer are directly associated with the
target variable. There is no logic based structure. The causal relationships
between the input variables and the target variable are learned from the
data. Through a suitable feature selection algorithm, we systematically
rank all observable variables given in the data set by their influence on the
target variable. We form the input layer by selecting a certain number of
the variables which have high impact on the target variable (e.g. the first 30
variables in the ranking of influence). The causal relationship between the
information variables and the target node is systematically learned by using
the EM algorithm for the static model and by adaptation for the dynamic
model. The procedure can be structured as follows:

1. Use a "rule-labeled" data set with the same features given for the
knowledge-based models (e.g ORIG). The discretized states of all
features are retained.

2. Feature selection and supervised discretization (IEM) where HQMV'T
is used as target node.

3. Connection of all input variables to the target node and creation of
temporal clones of all variables.

4. EM-learning of CPTs denoting the causal relation between the tar-
get variable HQMVT and all input variables. Adaptation of TCPTs
between two time-slices.
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8 Data-driven Model

In general the data-driven models have faster inference (e.g. dynamic NBN
0.025 ms, compared to ORIG-DBN with 0.149 ms) and need less memory
space compared to the knowledge-based models given in the previous
sections [27]. However, the number of False Positives (FP), i.e. wrong
recognized FOLLOW maneuver, is currently much higher than the evaluation
of knowledge-based models. The recognition of LC maneuvers is comparable
of both, the data-driven models and the knowledge-based models.

8.1 Feature Selection

Feature selection, also known as variable selection, is an important task in
the process of creating a data-driven model. In the work of this thesis, we
perform a maximum dependency selection to find the variables which have
most impact on the hypothesis variable HOMVT.

We use a score based feature selection algorithm which is related to the cross
entropy (mutual information). The algorithm belongs to the filter methods
which is independent of the underlying network model (according to [17]
and [8]). The entropy of a variable is the degree of chaos in the distribution
of the variable which can be considered as a measure of randomness. The
entropy of a random variable A is given by (according to [4])

ZP Ylog P(A) > 0. (8.1)

If the variable is normally distributed, we have the maximum of entropy. On
the other hand, if the probability distribution of the variable is located in a
single state, we have the minimum 0 of entropy [4].

We implement the event variable HQMVT in the output and determine the
influence of each information variable Y given in the data set on HQMVT.
The cross entropy is given by (according to [4])

1(Y,HQMVT) = H(HQMVT) — H(HHQMVTIY) , (8.2)
P(xy)
= x,y) I . 8.
ygerg\/IVT (xy)log P(x)P(y) ®3)

It denotes the reduction of entropy in HQMVT by observing states of Y.
Thus, we can compare the strength of dependency between different pairs
of the output event HQMVT and each information variable in the data
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(event-features pairs). In order to do that, we use the normalized symmetric
uncertainty [18]

2. I(HQMVT,Y)
(HQMVT) + H(Y)

U(HQMVT)Y) = & (8.4)

At the end of the feature selection, the computation results of all variable
pairs are stored into a ranking list.

8.2 Naive Bayesian Network

Giving the classification problem for the output event and the selected input
variables after their influence on the event variable, we can construct the
Naive Bayesian Network (NBN). It represents a particularly useful data-
driven model for handling big data classification problems. The construction
of a Naive Bayesian Network model (as shown in Fig. 8.1) follows two basic
assumptions:

1. Input variables are independent each other

2. Output node is connected directly to each input node.

We select as input a certain number of information variables Y7, ..., Y; in the
ranking list according to their strength of dependency with the output event
HQMVT. The input variables are directly connected to the output variable
without hidden layers. Their causal relationships are described using a CPT
as given in Table 8.2 where all states of the input variable are conditioned to
the maneuver classes of HQMVT. The probability parameters in the CPTs
are learned using EM algorithm (see Section 2.4.3).

The NBN can be dynamically extended by adding temporal clones to each
node (Fig. 8.3). The output event HQMVT is not only related to the
input variables but also to their temporal slices. Thus, the calculation
using dynamic NBN is generally more robust to the uncertainty in the
measurement data as compared to the static NBN. We use the Adaptation
approach (see Section 2.4.4) to learn the TCPTs.
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8 Data-driven Model

Figure 8.1: Naive Bayesian Network with selected input variables and the

output event HQMVT

Y \HQMVT DONT- OBJ- OBJ- EGO- EGO- OBJ- LANE-
CARE CUTIN CUTOUT | CUTIN CUTOUT | FOLLOW | FOLLOW
X1 010 611 612 613 614 015 016
Xn gno 6711 6712 6113 6114 0715 gnﬁ

Figure 8.2: CPT for describing the causal relationship between each input
information variable and the output event variable HOMVT

Figure 8.3: Dynamic extension of the Naive Bayesian Network Model
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9 Statistical Evaluation of all developed
classifiers

9.1 Evaluation Method

The developed evaluation method combines two modules. The module
1 is based on the recognition of the maneuver class in the highest logic
layer ultilizing the vehicle-vehicle-relationship. This evaluation module is
developed and used in [14]. The basic idea of scalability is that the developed
model only considers a pair vehicle-vehicle-relationship between the EGO
and one OB]J detected by the sensors. Therefore, if e.g. an OBJ vehicle
performs a CUTIN maneuver and drives into the lane in front of EGO,
the relation between both vehicles must be changed from LANEFOLLOW
to OBJFOLLOW. We use this logic and check through the labeled data
set in order to evaluate the performance of a classifier. The results are
summarized as confusion matrix. The positive class represents the cases with
LC maneuver. They can be either correctly recognized (TP: true positives)
or not recognized (FN: false negatives). The negative class represents the
FOLLOW maneuvers. They are correctly recognized (TN: true negatives) if
the system does not send any signal of a LC, or can be wrongly recognized
(FP: false positives) if the probability of LC exceeds the defined threshold of
65%. In this context, the confusion matrix can be established by considering
both the change in the states and the overcoming of threshold (according

to [14]):

o True Positive (TP): "correctly recognized", if LC probability is greater
than 65%, and the state changes as followed: OBJFOLLOW — OBJ-
CUTOUT or EGOCUTOUT — LANEFOLLOW,

LANEFOLLOW — OBJCUTIN or EGOCUTIN — OBJFOLLOW.

e False Positive (FP): "wrong recognized", if LC probability is greater
than 65%, and the state changes as followed:
OBJFOLLOW — OBJCUTOUT or EGOCUTOUT — OBJFOLLOW,
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9 Statistical Evaluation of all developed classifiers

LANEFOLLOW — OBJCUTIN or EGOCUTIN — LANEFOLLOW.

e False Negative (FN): "not recognized", if LC probability is less than
65%, and the state changes as followed:
OBJFOLLOW — LANEFOLLOW,
LANEFOLLOW — OBJFOLLOW.

o The rest is given as True Negative (TN), if there is no change in the
states.

The second evaluation module closely examines the vehicle-lane marking-
relationship. We consider two time points which are based on the actual
measurement values (also used in the methods of data labeling in Section
5.1). The first time point is defined as lane marking touching (LMT) which is
the starting time point where the vehicle enters the target lane. The second
time point is named as lane marking crossing (LMC) where the mid bumper
of the considered vehicle has penetrated the target lane so far such that
the change of coordinate systems is caused. We use LMC as the definition
of an accomplished LC maneuver. In this context, we again calculate the
transgression of the defined threshold for LC probability and compare it
to the both time points LMT and LMC in order to evaluate the classifier
performance given as accuracy and timegain.

Accuracy is the percentage between the numbers of correctly recognized
maneuver and the total number of the maneuver sequences given in the test
data. A LC maneuver is correctly recognized if the corresponding probability
reaches the threshold before the time point of LMC, whereas a FOLLOW
maneuver is correctly recognized if the defined threshold of LC probability
is never exceeded during the entire sequence.

The timegain of the developed BN classifier is calculated twice according
to both time points of LMT and LMC. The time difference between the
recognition and the LMC is established as the effective time win before a
maneuver is accomplished. The time difference compared to the LMT is
referred as the timegain to vehicle side, which provides information about
the time win before the vehicle starts to enter the target lane. It is important
for this thesis because we want to develop a classifier that can recognize the
driving maneuver when the vehicle is still on its own lane.
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9.2 Error Causes

9.2 Error Causes

This section gives a brief illustration about the error causes which mostly
affect the classifier performance. They can be divided into two categories.

1. Incorrect input data:
This category is independent from the modeling and parameterization
of the BN since the errors are already established in the input data and
cannot be compensated by the treatment of uncertainty or network
logic. The most relevant input data are the relative distance and
velocity between the vehicle and lane marking since we use the lane
marking as the reference system of the developed models. However,
the correct reconstruction of the virtual lane marking is not always
fulfilled by the image processing in case of detection uncertainties
and weakness of the stereo camera. Weather conditions, bad road
conditions, as well as a large gradient and a strong curvature of the
roadway can lead to the fact that the course of the lane markings cannot
be clearly estimated, which in turn lead to incorrect computation of
the relative lateral dynamics between the vehicle and the lane marking.

2. Incorrect parameterization of the Bayesian Network:

The trade-off problem between the competitive requirement criteria of
maximum accuracy and maximum timegain leads to difficulty in the
parameterization of the network parameters, especially for the static
BN models. The maneuvers that are taking place should be recognized
not only correctly without any false positives, but also at an early stage.
If the timegain is too much prioritized, the number of false positives
will quickly exceed the limit of acceptable accuracy level. On the other
hand, the model is only useful if a relevant maneuver is detected early
enough, such that the vehicle control systems still have enough time
to react at it.
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9.3 Evaluation Results

For the evaluation we use a clean separated data set of 353 maneuvers. The
balanced data set contains 178 lane change maneuver sequences and 175
follow sequences (including OBJFOLLOW and LANEFOLLOW). Data of
low quality where errors occur in the sensor measurements as well as the
follow-relevant data are excluded from the test data set. Follow-relevant
data denote the situations where the considered vehicle touches or crosses
the lane marking many times in the recording, but does not carry out the
lane change at the end. They are excluded because there is no systematic
approach to label them either to the positive class of LC or to the negative
class of FOLLOW. In the following, the evaluation results are presented as
table. We compare the performance of accuracy and timegain of the original
OOBN and each of the best developed classifiers using static BN with trend
analysis, DBN and NBN.

Figure 9.1 shows an overview over the evaluated classifiers: ORIG (with
original and optimized parameters), static knowledge-based model with
Linear (STAT_LinReg), DBN model (DBN_4fragm) where LE is divided
into four fragments denoting each vehicle side (EGOLEFT, EGORIGHT,
OBJLEFT, OBJRIGHT) and the dynamic NBN which is a data-driven model.
STAT_LinReg and DBN_4fragm are extended using logistic regression to
obtain even earlier recognition by predicting the probability of LC maneuver.
Tables 9.1, 9.2, 9.3 and 9.4 provide detailed evaluation results of the knowledge-
based classifiers where the number of TP and FN of the positive class denot-
ing the LC maneuver as well as the number of TN and FP of the negative
class denoting the FOLLOW maneuver are counted in the evaluation results.
The time performance is evaluated due to starting point of a LC (timegain
until LMT) and the end of an actual LC (timegain until LMC).

To evaluate the performance of static and dynamic knowledge-based models,
we have transferred the classifiers to C-code and deployed them on Linux
platform off-line and on the automotive platform of the experimental vehi-
cle. Figures 9.2 and 9.3 show examples of the visual evaluations where a
CUTIN sequence is recognized using implemented knowledge-based mod-
els STAT_LinReg and DBN_4fragm. As comparison, the same sequence
recognized by the ORIG model is presented in the appendix .4. The results
provide a basic understanding of the timegain performance. We can notice
for example the different recognition (cycle) time using different classifiers
with different threshold settings (35% and 65%, red arrow) as well as using
the prediction of logistic regression (green arrow).

120



9.3 Ewvaluation Results

The NBN is only implemented in the graphical user interface of the software
tool HUGIN and not integrated into the C-framework since we cannot
stabilize the output for FOLLOW maneuver. Thus, the evaluation of the
data-driven model is performed within the HUGIN tool using the test data
set.

Comparing the evaluation results given in the tables 9.1 and 9.2, we notice,
that the knowledge-based DBN classifier exhibits an higher accuracy (99.43%
vs. 99.15%) and an improved timegain (1.13 vs. 1.05 s) compared to the
ORIG model with optimized parameters. The knowledge-based static BN
model with implementation of linear regression to the LE fragment exhibits
a significant improvement in the timegain (1.4 s) with an acceptable dete-
rioration (about 96%, as shown in Table 9.2) in accuracy. If we consider
the situation given in Figures 9.2 and 9.3, we can notice the importance
of the earlier recognition. The STAT_LinReg classifier recognizes the LC
maneuver in this video sequence five time cycles (about 0.3 s) earlier than the
DBN_4fragm classifier. In the earlier recognized time point, the OB]J vehicle
with ID 31 is still in its own lane and starts the movement towards the lane
marking (Fig. 9.3), where in the other scene (Fig. 9.2) the OBJ vehicle is
immediately before entering our EGO lane.

The implementation of logistic regression improves as expected the timegain.
The DBN_4frag classifier shows still a good accuracy with improvement in
the timegain of three time cycles (about 0.16 s as shown in Fig. 9.1). In the
case of the STAT_LinReg classifier, the timegain is improved from 1.40 to
1.54 s. The accuracy in the recognition of FOLLOW maneuver is reduced to
88.6% (Fig. 9.1).

Performance with logistic regression
Classifier\Performance | Lane Change Follow timgain [s] Lane Change Follow timegain [s]
ORIG OOBN 96.1% 98.3% 0.77
ORIG OOBN with 98% 100% 1.05
optimized parameters
DBN_4fragm with 98.9% 100% 1.13 99.4% 98.4% 1.29
logistic regression
STAT_LinReg with 99.4% 96.2% 1.40 99.4% 88.6% 1.54
logistic regression
Dynamic NBN 99.4% 55.2% 2.13

Figure 9.1: Evaluation result overview
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The dynamic NBN classifier exhibits a very good performance in the recog-
nition of LC maneuver, but an unacceptable error rate in the recognition of
FOLLOW maneuver. Only 55.2% of the FOLLOW sequences are correctly
recognized (as shown in Fig. 9.1). That is also the reason, why we didn’t
implement the data-driven models in the experimental vehicle. We suspect
that the model could be on the one hand "overfitted" because we didn’t
perform analysis according to the number and characteristics of the selected
input variables. They are solely determined by the algorithms. On the other
hand, the problem domain in the output including six maneuver classes
and a complementary quantity is too complex for the case that the logic
layers, which provides additional knowledge about the dependencies of
the selected variables, are missing. It would be more compatible to reduce
the complexity of the classification problem, e.g. to a binary classification
problem.
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Table 9.1: Classifier: ORIG OOBN
MNVR all: 353
Positive Class | Negative Class

all:178 all:175
TP | FN TN | FP
OBJCUTIN 47 4
EGOCUTIN 42 0
OBJCUTOUT 43 3
EGOCUTOUT 39 0
LANEFOLLOW 115 1
OBJFOLLOW 58 1
Recognition all 171 173
Error Rate 3.93% 1.14%
Accuracy 97.45%
timegain (cross) 0.773 s
timegain (touch) —0.227 s

Table 9.2: Classifier: ORIG OOBN with optimized parameters
MNVR all: 353
Positive Class | Negative Class

all:178 all:175
TP | FN | TN | FP
OBJCUTIN 48 3
EGOCUTIN 42 0
OBJCUTOUT 46 0
EGOCUTOUT 39 0
LANEFOLLOW 116 0
OBJFOLLOW 59 0
Recognition all 175 175
Error Rate 1.68% 0%
Accuracy 99.15%
timegain (cross) 1.05s
timegain (touch) 0.038 s
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Table 9.3: Classifier: STAT_LinReg
MNVR all: 353
Positive Class | Negative Class

all:178 all:175
TP | FN TN | FP
OBJCUTIN 50 1
EGOCUTIN 42 0
OBJCUTOUT 46 0
EGOCUTOUT 39 0
LANEFOLLOW 111 5
OBJFOLLOW 57 2
Recognition all 177 168
Error Rate 0.56% 4%
Accuracy 97.73%
timegain (cross) 1.399 s
timegain (touch) 0.351s

Table 9.4: Classifier: DBN_4fragm
MNVR all: 353
Positive Class | Negative Class

all:178 all:175
TP | FN | TN | FP
OBJCUTIN 49 2
EGOCUTIN 42 0
OBJCUTOUT 46 0
EGOCUTOUT 39 0
LANEFOLLOW 116 0
OBJFOLLOW 59 0
Recognition all 176 175
Error Rate 1.12% 0%
Accuracy 99.43%
timegain (cross) 1.126 s
timegain (touch) 0.102 s
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Figure 9.2: Visual Evaluation of DBN_4fragm
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Figure 9.3: Visual Evaluation of STAT_LinReg
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10 Concept to transfer the computed
probabilities to Vehicle Control System

10.1 Integration into Adaptive Cruise Control

The first approach is the integration of the computed probability of maneuver
classes into the ACC system with consideration of the relative lateral dynam-
ics. The ACC system uses PID controller where the control parameters are
affected by the calculation of the criticality. Up to six vehicles can be taken
into consideration and the control object is the one with the highest criticality.
The calculation of criticality is based on the relative longitudinal and lateral
dynamics, where the parameters X_REL and V_REL in the longitudinal
direction and the parameters OLAT and VLAT in the lateral direction are
taken into account. In this context, we can replace the evaluation of the
lateral dynamics with the BN models since we have shown in the previous
chapters that the developed models have a very high accuracy and above all
a good timegain.

A possible approach would be a combination of the output probability of the
BN with the prediction of the time to collision (TTC pred) between the EGO
and each of the detected OB]J vehicle. Time to collision is a typical parameter
based on the relative longitudinal dynamics between to successive driving
vehicles. It is computed by the fraction of the measured relative distance As
and relative velocity Av [10]

TTCpreq = i—z
Based on TTC,,; and the output probability distribution of the predicted
maneuver classes, we evaluate the criticality of each detected OBJ vehicle
and take the necessary decisions for the different use cases. In the situation
of a OBJCUTIN (Cutin Warning or active collision avoidance) e.g., the
deceleration is activated if both thresholds (of TTC,s and P(OBJCUTIN))
are exceeded. Another example would be the Lane Departure Warning.
Instead of the calculation of the lane marking touching, we evaluate the
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probabilities of EGO LC maneuver (EGOCUTIN and EGOCUTOUT) and
simultaneously take the criticality of the OB]J vehicle in the target lane into
account. By suitable parametrization, it would provide an improvement to
the conventional Lane Departure Warning.

10.2 Extension of the Network Model

The second approach is to implement the criticality criterion in the BN model.
A possible design is shown in Figure 10.1. We insert a new object-oriented
fragment named REL_DYN which is a Boolean variable and represents the
evaluation result of the relative longitudinal dynamics of the considered
vehicle pair. In the existing network models, we already use a modeling
of the longitudinal relative dynamics based on fuzzy logic (as described
in Section 4.7.6). The relevance of a detected OBJ vehicle to the EGO
vehicle, and the situation analysis, is given in the corresponding variable
named CRITICALITY in a higher logic layer. Its conditional dependency
to the evaluation results of longitudinal relative dynamics and the predicted
maneuver is given by the CPT. In this case however, we can not determine
the parameters using learning algorithms since we do not have collision
data. Thus, the parameterization of the variable CRITICALITY is based on
expert knowledge and simulation.

POSDESCR

Figure 10.1: Modeling of situation criticality
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11.1 Summarize

In this thesis we consider three modeling approaches for the prediction of
relative driving maneuvers on the highway. The challenge is above all the
consideration of the driving maneuver as a dynamic process and take the
situation trend into account for earlier and accurate maneuver recognition.
Moreover, we use supervised learning algorithm to determine the probability
parameters. In this context, a big data set is collected from real highway
traffic for the learning process.

At first we consider the knowledge-based static network model. The pro-
cessed measurement data are evaluated in the hypothesis fragments in the
input layer and the results are propagated as evidences to the higher logic
layers. The intermediate logic layers representing different events are formu-
lated by expert knowledge. In the output, a single event variable HQMVT
is defined including six maneuver classes: OBJCUTIN, EGOCUTIN, OBJ-
CUTOUT, EGOCUTOUT, OBJFOLLOW, LANEFOLLOW and the comple-
mentary state DONTCARE. Using the Expectation Maximization algorithm,
we systematically determine the probability parameters in the input hy-
pothesis using a labeled learning data set (about 1000 maneuver sequences).
In addition, we take the driving dynamics into account by predicting the
lateral offset in the input layer and the lane change probability in the logic
layer denoting the Vehicle-Lane relation. The prediction is based on the
tracking of the trend by use of linear and logistic regression. The resulting
Bayesian Network classifier shows a significant improvement in the timegain
(1.1-1.5 s compared to 0.7-1.0 s at begin) either in the off-line simulation or
in the on-line visual evaluation in the experimental vehicle. Furthermore,
the regression approach solves the problem in the recognition of drifting
maneuver where the vehicle drives very slowly over the lane marking. Due
to the trade-off problem between recognition accuracy and timegain, there
is a deterioration (about 3.5%) in the accuracy which is acceptable.

In the next stage, we extend the static model to a Dynamic Bayesian Network
where the the trend analysis is considered within the network model. We
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add temporal clones to the information variables of the hypothesis fragment
Lateral Evidence (LE). The inserted temporal clones represent the same
variable with the same states at one time step in the past. Thus, the temporal
input information can be inherited over time steps. The causal relationship
between two successive time steps is represented by the transitional proba-
bility table. We use the Adaptation approach to determine the probability
parameters in the probability table. The Dynamic Bayesian Network model
has a high accuracy (over 98%) and a better timegain (1.13-1.29 s) compared
to the original static model. However, it requires more computational re-
source and storage space than the static model.

Besides the knowledge-based model, we also investigated the data-driven
model. Using a feature selection algorithm based on the mutual informa-
tion (cross entropy), the variable with most impact on the output event are
selected and inserted into a network model, where the input information
layer is directly connected to the output event without intermediate logic
layers. The basic idea of doing this is to investigate a procedure where
both the network structure and parameter are systematically learned from
data such that stranger and complex classification problems can be modeled
systematically. The resulted Naive Bayesian Network model has a good per-
formance in recognizing the Lane Change maneuver, but its accuracy in the
recognition of FOLLOW maneuver is not acceptable (only 55.2% accuracy).
Because of different features and dependencies in the data, we need the
logic knowledge-based layers such that the input data are grouped by their
dependency, and only the necessary information is propagated through the
network.

Summarized, we investigated in this thesis a procedure using probabilistic
graphical models for the forecast and prediction of dynamically developed
process, in this case the driving maneuvers on a highway. The qualitative
part (network structure) is constructed using human knowledge and ex-
perience, whereas the quantitative part, namely the parameterization of
conditional probabilities, is determined by the actual outcome for the corre-
sponding parameter combination. Thus, we can use the same procedure to
systematically construct systems for similar problems. The resulting model
can be extended or divided for different use cases. We are able to retrace the
plausibility of each solution.
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11.2 Future Development

The future development would firstly focus on the extension of the existing
modeling for special use cases such as CUTIN-Warning, Lane Departure
Warning and Collision Avoidance.

The main disadvantage of the current model is the strong dependency on
the existence of real or virtual lane markings which cannot be correctly
recognized in particular situations. Therefore, it is of great importance that
we use a robust reference system which is as little as possible influenced
by the environment conditions. A possible system would be the EGO track
which is formulated using the synchronization of sensor measurement and
the High-Definition digital map.

Furthermore, the timegain of Dynamic Bayesian Network model can be
improved using the strategy of multiple-step-ahead time series forecasting
within the network based on the temporal reasoning of multiple time slices.
For general purposes, it is necessary to find suitable learning algorithms to
determine the network structure from data. As complement to the Naive
Bayesian Network model which shows a high error rate in the recognition of
FOLLOW maneuvers, we can associate and group the selected variables by
their relative relationship. There are e.g. score-based and constraint-based
methods for determining the Bayesian Network structure from data. Related
explanations are e.g. given in [19], [17] and [15].
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12 Appendix

.1 Work Procedure

1. Optimization of the sigmoid parameters of the logistic function for the
knowledge-based Static Bayesian Network, representing the relative
dynamics in highway traffic. Expectation Maximization Learning of
Parameters of the Static Bayesian Network for early recognition of
maneuvers.

2. Output Filtering, Probability-Trend analysis of Static Bayesian Network
and Maneuver Prediction using logistic regression.

3. Early and precise recognition of vehicle maneuvers by use of Dynamic
Bayesian Network. Expectation Maximization Algorithm for finding
suitable parametrization.

4. Off-line Learning and adaptation of Transitional Conditional Probabil-
ity Distribution Parameters from real traffic maneuver sequences.

5. Analyzing of Data-driven models as comparison to the knowledge-
based models.

6. Statistical evaluation of the recognition performance in comparison
between Static and Dynamic Bayesian Network, between learned and
adapted models.

7. Concept for transfer of the computed probabilities of recognized
maneuvers of surrounding vehicles to the control modules for au-
tonomous driving.
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The results will be integrated in a scalable framework for the analysis of
streaming automotive data. The framework represents an independent soft-
ware system, which allows analysis, simulation and extensive testing of the
recognition capabilities, and will serve as a basis for the deployment on
the experimental vehicle of the obtained results. The results of the final
deployment in the vehicle will be statistically evaluated with data stream,
representing real traffic situations. The master work will also perform a
statistical evaluation of the initially set automotive requirements on recogni-
tion accuracy, time win of recognition as compared to actual lane marking
crossing. This will be performed in comparison to other earlier developed
statistical classifiers for maneuver recognition, based on Static and Dynamic
Bayesian Networks.
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.2 Conditional Probability Tables of the knowledge-based
Variables

In this section the CPTs of the knowledge-based variables are given in
the order from the higher logical layers to the lower logical layers. The
probability parameters within the CPTs are defined on the basis of the
logical relations between the modeled variables.

POSDCR POSLEFT POSLEFT | POSRIGHT
amvt LL | LR [ LG | RL|RR|RG | GL | GR | GG

DONCARE 1 1 0 1 1 1 1 0 0
OBJCUTIN 0 0 0 0 0 0 0 1 0
EGOCUTIN 0 0 1 0 0 0 0 0 0
OBJCUTOUT 0 0 0 0 0 0 0 0 0
EGOCUTOUT 0 0 0 0 0 0 0 0 0
LANEFOLLOW 0 0 0 0 0 0 0 0 1
OBJFOLLOW 0 0 0 0 0 0 0 0 0

Figure .1: Partial representation of the CPT of HOMVT

EGO.LC L R G

OBJ.LC L R G L R G L R G
LL 1 0 0 0 0 0 0 0 0
LR 0 1 0 0 0 0 0 0 0
LG 0 0 1 0 0 0 0 0 0
RL 0 0 0 1 0 0 0 0 0
RR 0 0 0 0 1 0 0 0 0
RG 0 0 0 0 0 1 0 0 0
GL 0 0 0 0 0 0 1 0 0
GR 0 0 0 0 0 0 0 1 0
GG 0 0 0 0 0 0 0 0 1

Figure .2: CPT of QMVT
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POSLEFT 1/3
POSINFRONT 1/3
POSRIGHT 1/3

Figure .3: Prior probability distribution in the variable POSDSCR denoting
the observation of relative position

LEFT.CROSS false true

RIGHT.CORSS | false true false true

L 0 1 0 0
R 0 0 1 0
G 1 0 0 1

Figure .4: CPT of OBJ.LC denoting the probability distributions of OBJ lane
change conditioned to the Boolean states of the variables in the logic layer of
(OB]J) Vehicle-Lane-Marking relation

OCCGRID false true
TRAI false true false true
LE false | true | false | true | false | true | false | true
false 1 1 1 0 1 0 1 0
true 0 0 1 1 0 1 0 1

Figure .5: CPT of (OBJ.LEFT.)CROSS denoting the probability distribution
of crossing the lane marking conditioned to the basic motion hypothesis LE,
TRA]J and OCCGRID, (Vehicle-Lane-Marking relation)
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.3 Clustering of the Lateral Dynamics

The plots below specify the classification problem of lateral dynamics. Mea-
surement values of OLAT and VLAT have high quality compared to other
variables, e.g. PSI and ALAT. Since we processed the input data and divided
them into clearly defined categories (LC, FOLLOW, FOLLOW _relevant), the
boundaries are obvious in the clustering plots, especially in the case of EGO
data, which have a very high quality. The challenge is however, that we not
only classify the input features, but also accurately predict their evolution.
This is the most important requirement, since we want recognize the driving
maneuvers at a very early time point, such that the control systems have
enough time to react to the critical situations.

The clustering is plotted in the VLAT-OLAT-axes. Each point in the plot
represents a particular configuration. The LE fragment calculates those
(parent) configurations and responses a binary (true or false) output denoting
the probability of the crossing of the lane marking. The red points represent
the labeled data of FOLLOW maneuvers whereas the blue points represent
the labeled data of LC maneuvers. Since we consider a dynamic driving
process, we want to find methods to predict the development of the lateral
dynamics.
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Figure .6: Clustering of lateral offset and velocity using EGO data
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Figure .7: Clustering of lateral offset and velocity using OBJ data
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.4 Visual evaluation of the original model

.4.1 ORIG OOBN with original parameters
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.4.2 ORIG OOBN with optimized parameters
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