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Cognitive Vehicles and Automated Driving Systems (ADS)

• What automated driving tasks can be supported by artificial cognitive systems?

− Surrounding-aware understanding of driving scene 

− Early recognition of highway maneuvers and situation criticality Suitable reaction of ADS

• How? Apply Bayesian networks 

− For development: represent the knowledge on the domain & learn from real data

− For maneuver recognition during on-road driving: using data streams of high volume and high 
frequency

• Why to use Bayesian networks (BNs)? Allow to

− model human reasoning & mimic the human decision process on situation analysis

− deal with the inherited uncertainties in the automotive domain

− explain conclusions
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Experimental Cognitive Vehicle and Data for Maneuver Recognition 
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From data to maneuver recognition

• Use Object Oriented Bayesian Network (OOBN) as method for 
maneuver recognition and reasoning under uncertainties

• Static (SBN) and Dynamic Bayesian Networks (DBN)

Radar
Long Range Radar in front

Multimode-Radars in the vehicle corners

Camera
Stereo camera in front windshield

Sensors



Surrounding-aware Maneuver Recognition

• Goal:

− Recognition of follow and lane change

by use of differentiating features & context

− Prediction of driving intentions,

based on the relative motion of a vehicles’ pair 

− Prediction of beginning maneuvers: 

CutIn, CutOut, 

Drifting towards the lane marking

• Analyze the context of the entire situation  Combinatorial and interpretation issues
− involving several vehicles on the surrounding lanes 

− all possible maneuvers of EGO and its surrounding vehicles (intersecting paths)

• Provide computationally scalable solution by analyzing pair of vehicles 
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Traffic Maneuvers of Interest
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CutIn

CutOut
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CutIn_Obj_f due to forced CutIn_Obj_f_r
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Cognitive Approach (Knowledge-based modeling)
by Bayesian Networks with Machine-learning
What? Situations characteristics on highway:

• Massive data streams due to many surrounding vehicles and changing environment
− Situations develop quickly and requires information in the order of milliseconds for analysis 

• Inherited Uncertainties
− Heterogenic input: sensor measurements, fused, computed data (numeric, labeled);      

− Modelling of traffic environment: Digital map, localization, perception algorithms, maneuver recognition

How?

• Cognitive Knowledge Representation by Bayesian Networks 
− Mimic human reasoning and decision. Use a-priori knowledge in the modeling of Driving Behavior

− Structured, easily extendable and probabilistic approach

− more compact than rule-based systems. BNs represent all maneuvers/intentions in one model. 

• Combination with Machine-learning (adapting the network parameters to real data)
− models and predicts the real driving behavior of involved vehicles
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red = own (EGO) vehicle ; 
blue = other vehicle (OBJ) 
in the scene

Elementary maneuvers to recognize
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Situation 2Situation 1

LANEFOLLOW

Situation 4

OBJFOLLOW

Situation 3 Situation 5 Situation 6

OBJCUTOUTOBJCUTIN EGOCUTOUTEGOCUTIN

Overtake maneuver = 
Follow Lane Change left Follow  Lane Chane right  Follow

Surrounding-aware 
Maneuver is defined by 
Vehicle-Vehicle relations.



Cognitive Hypotheses for Maneuver Recognition

Features combined into cognitive hypotheses to mimic human reasoning
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Trajectory Free Space
Lateral 

Movement
Lateral Evidence

(LE)

Symmetric
Coordinate System

Lane Change Maneuver is 
defined 
by Vehicle-Lane-Marking relation
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Bayes Network
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Bayes Network
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𝐵𝐵𝐵𝐵 = (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)
Qualitative part:

P(OLAT)
near 0.5

far 0.5

P(LE|OLAT,VLAT)
OLAT near far

VLAT to straight from to straight from

false 0 0.4 0.8 0.7 0.9 1

true 1 0.6 0.2 0.3 0.1 0

P(VLAT)
to 0.3

straight 0.4

from 0.3

OLAT VLAT

LE

Quantitative part: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 for discrete nodes given as (Conditional) Probability Table CPT
e.g. 𝑃𝑃 𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿 ,𝑃𝑃 𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿 ,𝑃𝑃(𝐿𝐿𝐿𝐿|𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂,𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉)

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = (𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)
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Joint Probability (Verbundwahrscheinlichkeit)

OLAT near = 0.5 far = 0.5

VLAT to = 0.3 straight = 0.4 from = 0.3 to = 0.3 straight = 0.4 from = 0.3

false 0.5 ⋅ 0.3 ⋅ 0 0.5 ⋅ 0.4 ⋅ 0.4 0.5 ⋅ 0.3 ⋅ 0.8 0.5 ⋅ 0.3 ⋅ 0.7 0.5 ⋅ 0.4 ⋅ 0.9 0.5 ⋅ 0.3 ⋅ 1

true 0.5 ⋅ 0.3 ⋅ 1 0.5 ⋅ 0.3 ⋅ 0.6 0.5 ⋅ 0.3 ⋅ 0.2 0.5 ⋅ 0.3 ⋅ 0.3 0.5 ⋅ 0.4 ⋅ 0.1 0.5 ⋅ 0.3 ⋅ 0

Chain Rule: 𝑃𝑃 𝑈𝑈 = �
𝑖𝑖=1

𝑛𝑛

(𝐴𝐴𝑖𝑖|𝑝𝑝𝑝𝑝(𝐴𝐴𝑖𝑖))

OLAT VLAT

LE

to:             0.3
straight:   0.4
from:        0.3

near:    0.5
far:       0.5

false:   0.635
true:    0.365

Initial Distribution:

In the example:

𝑃𝑃 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂,𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉, 𝐿𝐿𝐿𝐿 = 𝑃𝑃(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) ⋅ 𝑃𝑃(𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉) ⋅ 𝑃𝑃(𝐿𝐿𝐿𝐿|𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂,𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉)

OLAT VLAT

LE
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Bayesian Inference

𝑃𝑃 𝑈𝑈, 𝑒𝑒 = 𝑃𝑃 𝑈𝑈 ⋅ 𝑒𝑒 = �
𝑖𝑖=1

𝑛𝑛

(𝐴𝐴𝑖𝑖|𝑝𝑝𝑝𝑝(𝐴𝐴𝑖𝑖))�
𝑗𝑗=1

𝑚𝑚

𝑒𝑒𝑗𝑗

𝑃𝑃 𝐴𝐴𝑖𝑖|𝑒𝑒 =
∏𝑈𝑈/𝐴𝐴𝑖𝑖 𝑃𝑃 𝑈𝑈, 𝑒𝑒
∑𝑈𝑈 𝑃𝑃 𝑈𝑈, 𝑒𝑒

OLAT near = 0.5 far = 0.5

VLAT to = 0.3, e=1 straight = 0.4, e=0 from = 0.3, e=0 to = 0.3, e=1 straight = 0.4, e=0 from = 0.3, e=0

false (0.5 ⋅ 0.3 ⋅ 0) ⋅1 (0.5 ⋅ 0.4 ⋅ 0.4) ⋅0 (0.5 ⋅ 0.3 ⋅ 0.8) ⋅0 (0.5 ⋅ 0.3 ⋅ 0.7) ⋅1 (0.5 ⋅ 0.4 ⋅ 0.9) ⋅0 (0.5 ⋅ 0.3 ⋅ 1) ⋅0

true (0.5 ⋅ 0.3 ⋅ 1) ⋅1 (0.5 ⋅ 0.3 ⋅ 0.6) ⋅0 (0.5 ⋅ 0.3 ⋅ 0.2) ⋅0 (0.5 ⋅ 0.3 ⋅ 0.3) ⋅1 (0.5 ⋅ 0.4 ⋅ 0.1) ⋅0 (0.5 ⋅ 0.3 ⋅ 0) ⋅0

Example: Evidence e=(1,0,0) in the variable VLAT

OLAT VLAT

LE

OLAT VLAT

LE

to:             1
straight:   0
from:        0

near:    0.5
far:       0.5

false:   0.35
true:    0.65

Initial Distribution:
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In the example:



Object Orientierted Bayes Network (OOBN)
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Lateral 
Movement

Lateral Evidence
(LE)

OLAT VLAT

LE

Lateral 
Evidence

Encapsulate a set of variables and their causal relationship into a single 
Objected Oriented Fragment
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Dynamic Bayes Network
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• Modeling of temporal relation of the variables
• Inserting of temporal clones and links
• Causal relation between time slices is given by Transitional Conditional Probability Table (TCPT)

T1.OLAT T1.VLAT

LE

T0.OLAT T0.VLAT
TCPT (T0.OLAT->T1.OLAT)

T0.OLAT near near

near ? ?

far ? ?

TCPT (T0.VLAT->T1.VLAT)

T0.VLAT to straight from

to ? ? ?

straight ? ? ?

from ? ? ?



Example: Modeling of sensor uncertainties

21Surrounding-aware Maneuver Recognition| Dr. Galia Weidl |RD/ASF| 2018-06-12

− If the measurement instrument is not functioning properly (senor noise or fault), 

then the sensor_reading (S_measured) and the real variable (S_real) under measurement need not to be the same!

 Causal model structure:

The sensor_reading of any measured variable is conditionally dependent on random changes in two variables:

real value under measurement (S_real)

and sensor fault (S_sigma)

https://www.researchgate.net/profile/Galia-Weidl/publication/223839034_Applications_of_object-
oriented_Bayesian_networks_for_condition_monitoring_root_cause_analysis_and_decision_support_on_operation_of_complex_continuou
s_processes/links/0deec529f09b6da3c7000000/Applications-of-object-oriented-Bayesian-networks-for-condition-monitoring-root-cause-
analysis-and-decision-support-on-operation-of-complex-continuous-processes.pdf 

Weidl G., Madsen, A.L., Israelsson S. (2005), Object-Oriented Bayesian Networks for Condition 
Monitoring, Root Cause Analysis and Decision Support on Operation of Complex Continuous 
Processes: Methodology & Applications, Technical Report 2005-1, 36 pages, IST- University of 
Stuttgart



BN: Modeling Uncertainties in Measurements

Proper Modeling of Noise in Measured Variables
• Probability of sensor measurement: as Normal (Gaussian) distribution

𝑃𝑃(𝑆𝑆𝑚𝑚|𝑆𝑆μ, 𝑆𝑆σ2) = N(𝑆𝑆μ, 𝑆𝑆σ2)
• Supply evidence ≡ observation = {measured, communicated, computed value}: 

• measured situation features 𝑆𝑆𝑚𝑚 ≡ 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and their variance 𝑆𝑆σ2 ≡ 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

• Bayes Rule to infer (compute) the probability of the real value 𝑆𝑆μ ≡ 𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟= ? 
• Chain rule of probability:

𝑃𝑃 𝑆𝑆𝑚𝑚, 𝑆𝑆μ, 𝑆𝑆σ2 = 𝑃𝑃 𝑆𝑆𝑚𝑚 𝑆𝑆μ, 𝑆𝑆σ2 ∗ 𝑃𝑃 𝑆𝑆μ ∗ 𝑃𝑃 𝑆𝑆σ2

𝑃𝑃(𝑆𝑆𝑚𝑚|𝑆𝑆μ, 𝑆𝑆σ2) = N(𝑆𝑆μ, 𝑆𝑆σ2)

The waveform of a 
Gaussian white noise 
signal plotted on a graph

https://en.wikipedia.org/wiki/Waveform


BN: Modeling Uncertainties in Distance Measurements
Proper Modeling of Noise in Measured Variables (O_LAT = lateral offset to lane marking)
• Probability of sensor measurement: as Normal (Gaussian) distribution
𝑃𝑃(𝑆𝑆𝑚𝑚|𝑆𝑆μ, 𝑆𝑆σ2) = N(𝑆𝑆μ, 𝑆𝑆σ2), where 𝑆𝑆𝑚𝑚 = measured sensor value,

𝑆𝑆μ = mean of expected real value under measurement
𝑆𝑆σ2= variance of the measurement (sensor noise)

• P(O_LAT_MESS) = Normal (O_LAT_REAL, O_LAT_SIGMA * O_LAT_SIGMA)



BN: Modeling Uncertainties in Velocity Measurements
Proper Modeling of Noise in Measured Variables (V_LAT = lateral velocity towards lane marking)
• Probability of sensor measurement: as Normal (Gaussian) distribution:
𝑃𝑃(𝑆𝑆𝑚𝑚|𝑆𝑆μ, 𝑆𝑆σ2) = N(𝑆𝑆μ, 𝑆𝑆σ2), where 𝑆𝑆𝑚𝑚 = measured sensor value,

𝑆𝑆μ = mean of expected real value under measurement
𝑆𝑆σ2= variance of the measurement (sensor noise)

• P(V_LAT_MESS) = Normal (V_LAT_REAL, V_LAT_SIGMA * V_LAT_SIGMA)



Build the hypothesis by combining the two BN models of sensor
uncertainties for lateral velocity and lateral offset to lane marking
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Lateral Movement
Lateral Evidence

(LE)

Try to model it in 3 different ways:            1) qualitatively: based on experience as in the previos pages 12-14
2) Learn the BN model from data, as explained in pages 22-25 (see next pages)

3) Change in the learned BN model the conditional probability tables (CPT) to the expressions as described in p.18-19
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Use the learning Wizard to
learn BN model structure and 
parameters from data
- öffnen data file
- load data



Use the learning Wizard and learn BN model structure and 
parameters from data
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Use the learning Wizard and learn BN model structure and 
parameters from data

Analyse what is obviously wrong, e.g. 
Classification (labeled) variable 
is the result after inference
 wrong causality need constraint

forbiding it
 Set constraint on measurement:
The measurement cannot influence the real value
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BN: Model learning with Uncertainties in Measurements



Hypotheses for Maneuver Recognition under Uncertainties

LE, TRAJ, OCCGRID

Data LE: 

V_LAT_REAL, V_LAT_MESS, V_LAT_SIGMA

O_LAT_REAL, O_LAT_MESS, O_LAT_SIGMA
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Cognitive Hypotheses for Maneuver Recognition

Features combined into cognitive hypotheses to mimic human reasoning
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Trajectory Free Space
Lateral 

Movement
Lateral Evidence

(LE)

Symmetric
Coordinate System

Lane Change Maneuver is 
defined 
by Vehicle-Lane-Marking relation



Hypotheses for Maneuver Recognition under Uncertainties

TRAJ

- A_LAT_REAL, A_LAT_MESS, A_LAT_SIGMA

- PSI_ TTE_REAL, PSI_TTE_MESS, PSI_TTE_SIGMA

- TLCR_LAT_REAL, TLCR_LAT_MESS, TLCR_LAT_SIGMA
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- Set the model structure to
represent the qualitative relations
in the model

- Introduce constraints where
necessary

- Learn this Hypothesis from data
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Cognitive (Knowledge-based) 
Static Bayes model

Data and Artificial Intelligence for higher road safety | Prof. Dr. Galia Weidl



Cognitive (Knowledge-based) modeling
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• The modeling of network structure is based on physical Models und logical 
relation between the modeled variables

• Parametrization: 
− For logical cognitive variables: knowledge based hypotheses
− For basic hypothesis in the input layer: learned from data

• Problem domain (output)

• Recognition logic is based on: 
− relative position 
− relative movement

L R L L L L LR R R R R

1. OBJCUTIN 2. OBJCUTOUT 4. EGOCUTOUT3. EGOCUTIN 5. OBJFOLLOW 6. LANEFOLLOW

OBJ

EGO

OBJ

EGO EGO EGO EGO EGO

OBJ OBJ OBJ OBJ

Data and Artificial Intelligence for higher road safety | Prof. Dr. Galia Weidl



Definition of a Lane Change Maneuver
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-

- +

+

-

3. LMC

2. LMT

1. FOLLOW

+

+ +

+

+ -

-

+

left right𝑥𝑥-direction

𝑦𝑦-direction

• A Lane Change Maneuver is defined based on: 
Vehicle-Lane-Marking relation

• Symmetric coordinates

• Three states: 
1. FOLLOW: Vehicle follows the lane without 

touching the Lane Marking
2. Lane-Marking-Touch (LMT): Vehicle side 

touches the Lane Marking
3. Lane-Marking-Cross (LMC):  Vehicle mid 

bumper crosses the Lane Marking

Data and Artificial Intelligence for higher road safety | Prof. Dr. Galia Weidl
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Cognitive Hypotheses for Maneuver Recognition

Features combined into cognitive hypotheses to mimic human reasoning
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Trajectory Free Space
Lateral 

Movement
Lateral Evidence

(LE)

Symmetric
Coordinate System

Lane Change Maneuver is 
defined 
by Vehicle-Lane-Marking relation



Hypotheses for Maneuver Recognition under Uncertainties

TRAJ, OCCGRID (free space = 
safety), REL_DYN

OCCGRID (TTE = Time to Enter; 
TTD = = Time to Disapear)

- TTE_REAL, TTE_MESS, 
TTE_SIGMA, 

- same for TTD

- S_ TTE_REAL, S_TTE_MESS, 
S_TTE_SIGMA; 

- same for S_TTD
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Hypotheses for Maneuver Recognition under Uncertainties

TRAJ, OCCGRID (free space = safety), REL_DYN

OCCGRID (TTE = Time to Enter; TTD = = Time to Disapear)

- TTE_REAL, TTE_MESS, TTE_SIGMA, same for TTD

- S_ TTE_REAL, S_TTE_MESS, S_TTE_SIGMA; same for S_TTD
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- Set the model structure to
represent the qualitative relations
in the model

- Introduce constraints where
necessary

- Learn this Hypothesis from data
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Idea
• An Object is described in 3 Motion Classes (L, R ,G). G=Gerade=Straight
• This gives for an Object-Object relation: 9 Relation Classes (LL, LR, LG, RL, RR, RG, GL, 

GR, GG)
• Positioning of the reference vehicle (LEFT, RIGHT, INFRONT) results in 27 possible 

Driving Maneuvers

L R
G

LEFT RIGHT
INFRONT

CUT-IN Maneuver is one of all possible 27 Driving Maneuvers

L R
G

L R
G

LL

Modelling of Lane Change Maneuvers with OOBNs
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Modeling process
• Definition of symmetric lane coordinate systems (left, right) for each Object

• Design of OOBNs:
• Modelling of a Lane Change from the point of view of a lane coordinate systems
• Classification of the Motion Class per Object: Motion towards the lane: left, right, straight
• Classification by O-O Relation Class: Relative Position of Objects to each other

• All Pairs as Relative Positions LRG – LRG
• (k=2-Permutation from n=3 Elements with returning back  n^k = 3^2)

• Recognition of Driving Maneuver Situation in an Object-Object relation (EGO-OBJ) or (OBJ-OBJ)

Use of
Symmetry!

ilK ,

iyle ,

ixle ,

Lane
middle

iLK ,

iL
ye ,

iL
xe ,

iRK ,

iR
ye ,

iR
xe ,

iRK ,

iR
ye ,

iR
xe ,

iLK ,

iL
ye ,

iL
xe ,

( )nObjObji ,...,1∈

Modelling of Lane Change Maneuvers with OOBN’s
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Laterale Evidence (LE) occupancy grid (OCCG)Trajectory (TR)

Situation features to Modell Lane Change Maneuvers

•time to cross the
lane marking

• max usable
acceleration

• lane orrientation error

• distance to lane marking

• lateral speed

• occupancy time of a cell









∈
hrhlvrvl

hrvl
kT k

occ ,,,
,,,,

,

l r

h

v vrvl

hl hr

occupancy grid

iR
lcrT ,

iR
spur

,φ
iR

lata ,

iRK ,iRK ,

iR
lato ,

iR
latv ,

Modelling of Lane Change Maneuvers with OOBN’s
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Object-orriented
Bayes Nets



Object orriented Bayesian-Networks
OOBN:
• A Bayes-Net is designed hiercicaly in layers

• Each Layer involves Incapsulations of BN-Fragments to Instance nodes
• Definition of IN- and OUT-puts per Instance
• Transfer of Information from one Instance to another

45

e1 e2 e3

h1

Instance Ai

A1 A2

h2

Instance Bi

Advantages:
• Reuse of Instances
• Structured, modular und easily extendable

B1 B2

h3
e4

Instance Ci



Object orientierte Bayes-Netze
Bayes Nets vs. OOBN
• Lack of overview

• Hard for changes in multiple objects and for extentions
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A22A12

e111 e211 e311

h111

e121 e221 e321

h121

h21

e112 e212 e312

h112

e122 e222 e322

h122

h22

h3

e4

A11 A21

B1 B2

C1



Hypotheses for Maneuver Recognition under Uncertainties
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Modelling von
Lane Changen
with OOBN’s
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Overview of OOBNs for Recognition  of a Lane Change :

(L, R, G)

(LL,…,GG)

(LEFT, RIGHT, 
INFRONT)

(CUT-IN, 
CUT-OUT, 
…)

Modelling of Lane Change Maneuvers with OOBNs
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Crossing of a lane marking
• Generation of Lane Change Hypotheses and Free Space hypothesis
• Aggregation into one Main hypothesis
• Treatment of Uncertainties in Measurements

Lane Change Hypotheses
and Free Space hypothesis

Treatment of Uncertainties
in Measurements

Modelling of Lane Change Maneuvers with OOBNs
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• Treatment of Uncertainties in Measurements
• Modelling of noisy measurements as Normal distribution
•

• Hard Evidence – as input of the computed Situation features and their Variances
Computation of their expected values (Probability of real values)

Modelling of Lane Change Maneuvers with OOBNs
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Modelling of Lane Change Maneuvers with OOBNs
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Results
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• Unified Representation of a Scene by the worled modell

• Recognition of Lane Changes with OOBN

− simple Design 

− modular, easy extendable

• Integration of the Driving Maneuver Recognitionmoduls on theImage
Processing-PC of the vehicle

− Cycle time ~ 2 ms per Object relation

• Use of Learn methods to Parameterize the Bayes Nets 

Results



Cognitive Model Structure and Layers for 
Situation-aware Maneuver Recognition
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MNVR
Lane Chane LC_OBJ1

LEFT L; RIGHT R; FOLLOW F

LANEMARKCROSS

LMC_Left

LE

TRAJ

OCCGRID_
OBJ1

OCCGRID_
OBJ2

LANEMARKCROSS

LMC_Right

LE

TRAJ

OCCGRID_
OBJ1

OCCGRID_
OBJ2

LC_OBJ2
L; R; F

MANEUVER ADVICE

Need for LC

Longitudinal 
REL_DYN 

(RD)

SAFE_RD
(SRD) LEFT

Same structure 
as for OBJ1

La
te

ra
l 

Re
la

tiv
e

Dy
na

m
ic

s

Sa
fe

ty
“F

re
e 

 S
pa

ce
 F

S”

Hypotheses:     H1.1  H1.1                                H1.2

SAFE_RD
(SRD) RIGHT

Modeling of uncertain data (var = σ2):
sensor measurements, fused, 

computed data (numeric, labeled)    

vehicle-lane-marking
relation

vehicle-lane relation

vehicle-vehicle relation
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Object Oriented Bayesian Network (OOBN)

Bayesian Network in terms of classes and objects

• Reduces modeling complexity of BN in large complex domains

by model library of fragments (for repetitive modelling elements)

• Allows BN fragments to be reused in similar situation context

• Enables easy modification in network design without disturbing the whole network

• Easily extendable

56

μσ2

S

Modeling of uncertain data 
Class: level_S

Evaluation of hypotheses 
Class: level_H

Modeling of Events
Class: level_E

(with k instances of level_S) (with n instances of class level_H)

μ1 μk

H

… H1 Hn

E

…
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Object Oriented Bayesian Network

Bayesian Network in terms of classes and objects

• Reduces modeling complexity of BN in large complex domains

− by model library of fragments

• Allows BN fragments to be reused in similar situation context

• Enables easy modification in network design without disturbing the whole network

• Easily extendable
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μσ2

S

Modeling of noisy data 
Class: level_S

Evaluation of hypotheses 
Class: level_H

Modeling of Events
Class: level_E

(with k instances of level_S) (with n instances of class level_H)

μ1 μk

H

… H1 Hn

E

…



Maneuver Recognition: OOBN Hierarchical Abstraction Levels
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μσ2

S

1

MNVR

LC_OBJ2LC_OBJ1

rel.pos5

LMC

… HnH1

true
false3

H

…μ1 μk

2

LC

LMC    
Left

LMC   
Right

L/R/F4

MI



Dynamic Bayesian Networks for Early Maneuver Prediction

Model the observed Trends by Causal Relations between the time steps & Transitional Conditional 
Probability

Situation Interpretation by Bayesian networks| Dr. Galia Weidl  59

μ1σ2

S1

μ2 σ2

S2

H

μ1σ2

S1

μ2 σ2

S2

H

DBN New Challenges:
 Memory
 Computation time
 Prediction horizon
 Need for efficient inference     

algorithms for DBN

DBN = Dynamic Bayesian Network

O(t+1)=O(t)+v(t)·dt + N,
N = white noise N(0,σ2) due to 

possible acceleration term 
(a·dt2)/2 

Time t Time t+1



Cognitive Systems by Bayesian Networks

• The network structure reflects relations from physical models and logical relations between the variables

• Knowledge-based Structure with recognition logic based on: 

− relative position

− relative movement

to lane marking; to lane; to surrounding vehicles

• Vehicle-Vehicle relation One Model for all maneuver states as 6 classes (= elementary maneuvers):

− ObjCutIn; ObjCutOut; EgoCutIn; EgoCutOut; ObjFollow; LaneFollow

• Parametrization based on knowledge and adapted by data: 

− For each logical variable: knowledge based growth function (sigmoid/logistic functions)

− For basic hypothesis in the input layer: learned/adapted from data
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Structure

1. Bayes Network

2. Development Environment

3. Knowledge-based static Model

4. Trend Analysis

5. Dynamic Bayes Model

6. Naive Bayes Model

7. Evaluation Results

8. Summary

9. Future development
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Scenario 1: Observed behavior during lateral relative dynamics towards the lane marking. It allows early 
recognition of beginning lane change (LC) before crossing the Lane Marking.                    

Scenario 2: Intended behavior due to longitudinal relative dynamics between following and front vehicles 
on the same lane: car drives on a highway at constant speed. It allows to predict early a needed LC

Early Recognition/Prediction of Needed Lane Change Maneuver 

63

obj1
obj2

obj3

Lane-change 
prediction time
= Time gain before
Lane mark crossing

Lane-change 
Start point

Actual lane-change point
(lane marking crossing)

Lane-change 
prediction point

Lane-change 
End point
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Dynamic Bayesian Networks 
for Lateral and Longitudinal Relative Dynamics

64

Lateral features:
LE_DBN: 2T-DBN structure 
for the hypothesis LE (Lateral Evidence) 
for Lateral Relative Dynamics towards the lane marking

Longitudinal features:
REL_DYN_DBN: The 2T-DBN structure
for the hypothesis REL_DYN (RD)
(Longitudinal Relative Dynamics)
with A_REL_REAL as hidden node

XREL_𝑅𝑅𝐸𝐸𝐴𝐴𝐿𝐿(𝑡𝑡) ~  𝑁𝑁(XREL _𝑅𝑅𝐸𝐸𝐴𝐴𝐿𝐿(𝑡𝑡-1) + VREL _𝑅𝑅𝐸𝐸𝐴𝐴𝐿𝐿(𝑡𝑡-1) ∙∆t ,  𝜎𝜎X (𝑡𝑡)
2 )   

VREL _𝑅𝑅𝐸𝐸𝐴𝐴𝐿𝐿(𝑡𝑡) ~  𝑁𝑁(VREL _𝑅𝑅𝐸𝐸𝐴𝐴𝐿𝐿(𝑡𝑡-1) + AREL _𝑅𝑅𝐸𝐸𝐴𝐴𝐿𝐿(𝑡𝑡-1) ∙∆t ,  𝜎𝜎𝑉𝑉 (𝑡𝑡)
2 )   

AREL_𝑅𝑅𝐸𝐸𝐴𝐴𝐿𝐿(𝑡𝑡) ~  𝑁𝑁(AREL _𝑅𝑅𝐸𝐸𝐴𝐴𝐿𝐿(𝑡𝑡-1),  𝜎𝜎A (𝑡𝑡)
2 ) 

LE_DBN By analogy: REL_DYN_DBN
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Relative Dynamics & Safety
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Relative Dynamics
REL_DYN

Variance (𝜎𝜎V)2

of relative velocity

Real value of
relative velocity

VREL_𝑅𝑅𝐸𝐸𝐴𝐴𝐿𝐿

Measurement 
of relative velocity

VREL_MEAS

Variance (𝜎𝜎X)2

of relative distance

Real value of
relative distance

XREL_𝑅𝑅𝐸𝐸𝐴𝐴𝐿𝐿

Measurement 
of relative distance

XREL_MEAS

True/False

REL_DYN_V_REL REL_DYN_X_REL

Data: REL_DYN + SAFE_REL_DYN
V_REL_OBJ_MESS, V_REL_OBJ_VAR 
X_REL_OBJ_MESS, X_REL_OBJ_VAR
V_REL_EGO_MESS,X_REL_EGO_MESS

X_REL_FRONT, V_REL_FRONT, 
T_REL_FRONT

X_REL_BACK, V_REL_BACK, 
T_REL_BACK

̶ Hypothesis

̶ Evidence

̶ Hidden node

SAFE_BEHIND

SAFE_RD
T, F

V_FRONT_VAR V_FRONT_REAL

V_FRONT_MESS

TTC_FRONT_VARTTC_FRONT_REAL

TTC_FRONT_MESS

SAFE_V_FRONT SAFE_TTC_FRONT

SAFE_FRONT

Same structure 
as for FRONT
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Cognitive OOBN with lateral and longitudinal dynamics

66

Lateral Relative
Dynamics

Longitudinal Relative
Dynamics

Computationally tractable solution uses Divide&Conquer to split the 
original OOBN model into BN-fragments  performs inference in 
each BN-fragment and uses the inference results as likelihood at the 
next level
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Testing of Bayesian Network Performance 
for Maneuver Recognition
• The developed scalable software system for maneuver recognition has been implemented/transferred on 

the Linux target platform, emulating the automotive platform of the experimental car. 

• The car is used to collect streaming data and to test the developed algorithms. 

• The best performing classifiers - selected as trade-off between high accuracy and prediction time, based on

− optimal initial guess, 

− learning and adaptation of parameters in the models, 

− linear and logistic regression. 

• The framework has been deployed on the prototype car and tested both statistically and during driving on 
real highways in Germany and Luxembourg. Proven feasibility of approach to required accuracy and 
prediction time for DBNs with adaptation and using save-to-memory, instantiation junction tree techniques 
and the divide-&-conquer approach.

• Recognition performance - visualized in the user display - observed during the drive on the highway.
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• Evaluation is based on the time point of lane cross, which is marked in the data (annotation)

• Network parameters of the knowledge based structures are learned from a (big) data set, collected in real highway driving
• Only learning (DNaiveBN without knowledge ) is not accurate enough for Follow; Good (time gain) recognition of Lane Change
• Trend analysis - uses logistic regression approaches for early recognition
• Extension to DBN improves both accuracy and recognition time gain

• Demonstrate feasibility: System deployment on experimental vehicle and test in real highway drives

Testing & Evalutation Results

68

Classifier\Performance Lane Change Follow Time gain [sec]

ORIG OOBN 96.1% 98.3% 0.77

ORIG OOBN (opt param) 98% 100% 1.05

DBN_4fragm with LogReg 98.9% 100% 1.13

STAT with LinReg & LogReg 99.4% 96.2% 1.40

(Dynamic) NaiveBN 99.4% 55.2% 2.13

Trend Analysis: Performance with Logistic Regression

Lane Change Follow Time gain [sec]

99.4% 98.4% 1.29

99.4% 88.6% 1.54

How to test the system performance? Use statistical evaluation.
• Clean the test data set of 350 sequences (balance: 50% Lane Change + 50% Follow)
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When to use Bayesian Networks to the nature of the problem to ensure, 
that probabilistic networks are an appropriate choice of method?

Highly structured domain with cause-effect relations

• Detailed knowledge about structure and probabilities (can be also learned from data)

• (causal) relations among the variables, the conditional probabilities quantifying the relations.

• Static structure (qualitative relations remain), but drifting probabilities

• The variables and events (i.e., possible values of the variables) of the problem domain must be well-defined.

Possibly different sources of uncertainty with known relations among the variables

• Incomplete knowledge,

• Noisy observations/measurements,

• Abstractions of information

Efficient solution of queries given evidence and (conditional) dependence and independence relations

69



When to use Bayesian Networks over other machine learning approaches?

70| Prof. Dr. Galia Weidl Surrounding-aware Maneuver Recognition

Assume you have a set of inputs, X, and outputs Y. 
Bayesian Networks (BN's) are generative models, i.e. allow to learn the joint probability distribution of data P(X,Y), 
which is more difficult than learning the conditional probability distribution P(Y|X)P(Y|X) for (discriminative models), e.g. logistic regression or 
Support Vector Machine, 
Generative models are more versatile, where you can run queries such as P(X1|Y) or P(X1|X2=A,X3=B), etc. With the discriminative model, your 
sole aim is to learn P(Y|X)P(Y|X).
Advantages:
1.When you have a lot of missing data, e.g. in medicine, BN's can be very effective since modeling the joint distribution (i.e. your assertion on 
how the data was generated) reduces your dependency in having a fully observed dataset.
2.When you want to model a domain in a way that is visually transparent, and also aims to capture cause→effect relationships, BN's can be very 
powerful. Note that the causality assumption in BN's is open to debate though.
3.Learning the joint distribution is a difficult task, modeling it for discrete variables (through the calculation of conditional probability tables, i.e. 
CPT's) is substantially easier than trying to do the same for continuous variables though. So BN's are practically more common with discrete 
variables.
4.BN's not only allow observational inference (as all machine learning models allow) but also causal interventions. This is a commonly neglected 
and underappreciated advantage of BN's and is related to counterfactual reasoning.
* In the advantage 1 where you say BNs are effective for modelling data with lots of missing values, don't these missing values affect the correct 
identification of independencies in the data?
*Yes, while fitting the model you would still need to impute with some assumptions, but once you have a structure for, e.g. P(Y,X1,X2)P(Y,X1,X2), 
depending on the factorization of your DAG (that encapsulates your independence assumptions), you may not need X1 if X2 is already available, 
or vice versa.
*In my experience, Bayesian Networks work very well when there is high dimensional categorical data. They give interpret-able models, which 
(sometimes) aid in making sense of how the different variables interact.

https://stats.stackexchange.com/questions/139728/when-to-use-bayesian-networks-over-other-machine-learning-approaches
http://www.cogsci.ucsd.edu/%7Eajyu/Readings/pearl_causal.pdf


Testing in the experimental cognitive car on highway drive
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Testing in the experimental cognitive car on highway drive
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DBN: adapted TCPT + 4 learned LE fragm
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video_2015-11-02_103149_LINREG_DBN
Merge Situation for Truck
EGO_ID29 (EGOCUTIN_Right): TimeGain=2.28s before LMC
ID29 (OBJCUTOUT_Left) : TimeGain=0.72s before LMC
ID26 (OBJCUTIN_Left) : TimeGain=1.68s before LMC

| Dr. Galia Weidl |RD/ASF| 2018-06-12Surrounding-aware Maneuver Recognition



DBN: adapted TCPT + 4 learned LE fragm
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video_2016-10-06_152205_LINREG_DBN
ID39 (OBJCUTIN_Right, t=183): TimeGain=0.66s before LMC
ID10 (OBJCUTIN_Right, t=380): TimeGain=2.22s before LMC
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video_2016-07-08_140327_LINREG_LElearned_Merge.avi
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video_2016-07-08_140327_LINREG_LElearned_Merge.avi: ID37 (ID6)
Time gain = 2.82 s, ObjCutIn ID37 (rec.frame 340, LMC at 487)
Time gain = 1.08s, ObjCutIn ID6 (rec.frame 435, LMC at 453)
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neu
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D29_2016-07-25_103441_[20161220_074615].csv: Rel_DYN; 
ObjCutOut ID29     Recognition by Trend at f189 f194: Trend+BN(p>65%)

3=ObjCutOut ID29  Time gain = 2.88s; 2= (f229)

GOCutIn_ID11  dt=1.44s, ID29  dt =1.38s, 2= (f361)
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video_2016-10-06_155434_LINREG_00_CutInLong.avi
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video_2016-10-06_155434_LINREG_00_CutInLong.avi
OBJ_ID14 CutIN (far ahead of EGO)(rec.frame 8) 
OBJ_ID11  dt = 1.32s (rec.frame 242, LMC at 264) , 
OBJ_ID14  dt =1.2s CutOut (vor EGO, rec.frame 323, LMC at 343)
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DBN: adapted TCPT + 4 learned LE fragm
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video_2016-12-22_130733_LINREG_DBN_LE4fragm
_learned_TCPTocc_00_OBJCUTOUT_ID11_RELDYN_130-300.avi

REL_DYN starts signalizing: 
OBJ_ID11 needs lane change at frame t=131
 t= 233 lateral dynamics trend 
recognizes the initiated lane change

 t= 243: LMC 
Time gain for LE = 0.6s (10 cycles)
Time gain for REL_DYN = 6.12s (102 cycles)
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DBN: adapted TCPT + 4 learned LE fragm

79

video_2016-12-22_124902_LINREG_DBN_LE4fragm_learned_TCPT
occ_EGOCUTOUT_17-217_RELDYN_blue

First recognized intention t=40
need of lane change 
due to EGO approaching 
with higher speed 
a front vehicle 

 Initiated maneuver trend recognized 
at t=157 time gain117 time cycles 
7.02 earlier than actually performed 

 LMC at t=172: 
Maneuver intention recognized 
(7.92) sec earlier than 
star (EGO) crosses the lane marking
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Ask Mercedes: Explain autonomous driving Dr. Galia Weidl |RD/ASF| 2018-01-11| 80

OBJ_ID31 Car CutIn dt = 1.32 s (rec.frame 416 , LMC at 438)
 Transparency and explanations of Conclusions:
- EGO braking for safety & comfortability (frame438). 
Car CutIn in front of EGO due to CutIn Bus vor it (Truck in front of Bus)
video_2016-06-02-184704_Complete.avi
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video_RelDyn
OBJ_ID4 car CutOut
 dt = 3.66 s (rec.frame 220 (RelDyn), LMC at 250)
 dt = 2.4 s (rec.frame 230(beg.), LMC at 250)

EGO CutOut
 dt = 1.2s (rec.frame 248 (RelDyn), LMC at 250)
 dt = 1.8 s (rec.frame 269(beg.), LMC at 250)

OBJ_ID4 car CutOut dt = 1.68 s (rec.frame 324 , LMC at 352)

OBJ_ID20 Truck CutIn dt = 1.32 s (rec.frame 416 , LMC at 438)
Explanations of Conclusions: 
Obj_ID20: Truck CutIn in front of EGO due to slower Caravan infront
EGO braking for safety & comfortability at tf=438
video_2016-04.22.120310_LKWcomplete.avi



Summary: Situation Interpretation in Cognitive Cars 

We developed a scalable system approach  for surrounding-aware maneuver recognition, realized as 
combination of

• Knowledge Representation by hierarchical dynamic object-oriented Bayesian Networks

• Machine Learning (from real highway data) for improvement of recognition performance of the 
dynamic model by use of EM learning or sequential adaptation

It demonstrates Stable Trend Analysis

• achieved by integrating knowledge and data in the models & logistic regression on the trend

• meeting the automotive requirements on accuracy and prediction 

• system transparency by explanation of conclusions.,

System is successfully deployed and tested in the experimental cognitive vehicles in real traffic.
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Questions?
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Thank you!
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