Surrounding-aware, Early and Accurate Recognition of Maneuvers in
Real Highway Traffic by Use of Bayesian networks

Applications in cognitive vehicles driving on real roads

Cognitive and object-oriented modeling under uncertainties
as aspects of artificial intelligence in practical applications
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Cognitive Vehicles and Automated Driving Systems (ADS)

 What automated driving tasks can be supported by artificial cognitive systems?

— Surrounding-aware understanding of driving scene

— Early recognition of highway maneuvers and situation criticality = Suitable reaction of ADS
 How? Apply Bayesian networks

— For development: represent the knowledge on the domain & learn from real data

— For maneuver recognition during on-road driving: using data streams of high volume and high
frequency

* Why to use Bayesian networks (BNs)? Allow to
— model human reasoning & mimic the human decision process on situation analysis
— deal with the inherited uncertainties in the automotive domain

— explain conclusions
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Experimental Cognitive Vehicle and Data for Maneuver Recognition

From data to maneuver recognition
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« Use Object Oriented Bayesian Network (OOBN) as method for
maneuver recognition and reasoning under uncertainties
- Static (SBN) and Dynamic Bayesian Networks (DBN)
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Surrounding-aware Maneuver Recognition

e Goal: O 2L O_fL O f fL
sy —-==- > -~"'_\___> ~ e b
— Recognition of follow and lane change (D2 e SN e (L2 S
\ 7/ s\
VRN N7 VRN
by use of differentiating features & context 01 JABEERN O_f SN R O_f_f JABEEEN
- S - = - S~
— Prediction of driving intentions, S R 0 - N e
. L > N,
: . . : N O fR 2 OffR >y
based on the relative motion of a vehicles’ pair O_3R RN — RN — JRaNY
@50 | @ Y| @S
o« g . . S - N N
— Prediction of beginning maneuvers: ML R S
/A\ \\ \\
Cutln, CutOut, S S~s DN DR

Drifting towards the lane marking

* Analyze the context of the entire situation 2 Combinatorial and interpretation issues
— involving several vehicles on the surrounding lanes

— all possible maneuvers of EGO and its surrounding vehicles (intersecting paths)

* Provide computationally scalable solution by analyzing pair of vehicles
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Cognitive Approach (Knowledge-based modeling)
by Bayesian Networks with Machine-learning

What? Situations characteristics on highway:

Massive data streams due to many surrounding vehicles and changing environment
— Situations develop quickly and requires information in the order of milliseconds for analysis

* |Inherited Uncertainties

— Heterogenic input: sensor measurements, fused, computed data (numeric, labeled);

Modelling of traffic environment: Digital map, localization, perception algorithms, maneuver recognition
How?
* Cognitive Knowledge Representation by Bayesian Networks

— Mimic human reasoning and decision. Use a-priori knowledge in the modeling of Driving Behavior

— Structured, easily extendable and probabilistic approach

— more compact than rule-based systems. BNs represent all maneuvers/intentions in one model.

Combination with Machine-learning (adapting the network parameters to real data)

— models and predicts the real driving behavior of involved vehicles
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Elementary maneuvers to recognize
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Surrounding-aware
Maneuver is defined by
Vehicle-Vehicle relations.

red = own (EGO) vehicle ;
blue = other vehicle (OBJ)
in the scene
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Cognitive Hypotheses for Maneuver Recognition

Features combined into cognitive hypotheses to mimic human reasoning
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Bayes Network
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Bayes Network

BN = (Graph, Parameters)

Qualitative part: Graph = (Variables, Links)
Quantitative part: Parameters for discrete nodes given as (Conditional) Probability Table CPT
e.g. P(OLAT), P(VLAT), P(LE|OLAT,VLAT)

P(OLAT) P(VLAT)
near 0.5 to 0.3
far 0.5 straight | 0.4

P(LEJOLATVLAT)

from 0.3

near far

straight from to straight
0.4 0.8 0.7 0.9
0.6 0.2 0.3 0.1
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Joint Probability (Verbundwahrscheinlichkeit)

Chain Rule: P(U) = H(Ai|Pa(Ai))

U= (Al,...,An) l=1

In the example: @ @

P(OLAT,VLAT,LE) = P(OLAT) - P(VLAT) - P(LE|OLAT, VLAT) ClED

OLAT near = (0.5 far=0.5

VLAT to=0.3 straight = 0.4 from=0.3 to=0.3 straight = 0.4

false 0.5-03-0 0.5-04-04 0.5-0.3-0.8 0.5-0.3-0.7 0.5-04-09
true 0.5-03-1 0.5-03-0.6 0.5-03-0.2 0.5-03-0.3 0.5-04-0.1

Initial Distribution: [ ... o5 to: 0.3
far: 0.5 straight: 0.4 v >

0.00 to

3
from: 0.3 35:89 ghaant

false: 0.635
true: 0.365 5.50 falee

36.50 true
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Bayesian Inference

PW,e)=PW) e = [cailpaca ]| [ ¢
i=1 j=1

P(4ile) =

HU/Ai

P(U,e)

Ly P
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Example: Evidence e=(1,0,0) in the variable VLAT

QLAD
CLED

ULAD

In the example:

P(LE = falsele) = Ypr— fase P(U,e) = SHOHEOIEF0H0E0 — 0 35
p(LE — true|e) — ZLE—EHEE P(Z/{,C’) — 0.15+0+Oag.045+0+0 — 0.65

OLAT near = 0.5 far=0.5
VLAT to=0.3,e=1 straight = 0.4, e=0 from=0.3, e=0 to=0.3,e=1 straight = 0.4, e=0 from =0.3, e=0
false (05-03:0):1|(05-04-04)-0 (05-03-08)-0 | (05:-0.3-0.7)-1 (0.5-0.4-09) -0 (05-03-1)-0
true (05-03-1)-1 | (05-0.3-0.6)-0 (0.5-03-0.2)-0 | (05-03-0.3)-1 | (05-04-0.1)-0 (05-0.3-0)-0
Initial Distribution: | car: o5 to: 1
far: 0.5 straight: 0
from: 0 g
false: 0.35
true: 0.65
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Object Orientierted Bayes Network (OOBN)

b) Encapsulate a set of variables and their causal relationship into a single
r Objected Oriented Fragment
Olat 1
> ,
e > N
T
Vlat
Lateral
> Evidence

Lateral
Movement K /

Lateral Evidence
(LE)
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Dynamic Bayes Network

* Modeling of temporal relation of the variables

* Inserting of temporal clones and links

* Causal relation between time slices is given by Transitional Conditional Probability Table (TCPT)

TCPT (TOVLAT->T1.VLAT)
TO.OLAT TO.VLAT .
TCPT (TO.OLAT->T1.0LAT) TOVLAT | to straight

TO.OLAT near near

to

.
A 4

straight
far ? ?
T1.0LAT T1.VLAT from

near ? ? i
A
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Example: Modeling of sensor uncertainties

— If the measurement instrument is not functioning properly (senor noise or fault),
then the sensor_reading (S_measured) and the real variable (S_real) under measurement need not to be the same!

=» Causal model structure:

The sensor_reading of any measured variable is conditionally dependent on random changes in two variables:
real value under measurement (S_real)

and sensor fault (S_sigma)

https://www.researchgate.net/profile/Galia-Weidl/publication/223839034_Applications_of_object-
oriented_Bayesian_networks_for_condition_monitoring_root_cause_analysis_and_decision_support_on_operation_of_complex_continuou
s_processes/links/0deec529f09b6da3c7000000/Applications-of-object-oriented-Bayesian-networks-for-condition-monitoring-root-cause-
analysis-and-decision-support-on-operation-of-complex-continuous-processes.pdf

Weidl G., Madsen, A.L., Israelsson S. (2005), Object-Oriented Bayesian Networks for Condition
Monitoring, Root Cause Analysis and Decision Support on Operation of Complex Continuous
Processes: Methodology & Applications, Technical Report 2005-1, 36 pages, IST- University of
Stuttgart

5 _MmMeasured

[e]
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BN: Modeling Uncertainties in Measurements

Proper Modeling of Noise in Measured Variables
» Probability of sensor measurement: as Normal (Gaussian) distribution
P(Sm 1Sy, So2) = N(S,, S52)
« Supply evidence = observation = {measured, communicated, computed value}: 0
- measured situation features Sy, = Sipeqsureqa and their variance Sg2 = Sgmq

200 400 660 800 1000

The waveform of a

- Bayes Rule to infer (compute) the probability of the real value S, = Syeq;= 7 Gaussian white noise
- Chain rule of probability: signal plotted on a graph

P(Sm, Sy Sg2) = P(Sm|Sw Soz) * P(S,) * P(S42)

S_measured <] S _real ]
u=0.15, 02=8.33E-4 & u=0.16, oz=0.04
5_sigma [ 0.00 -inf - -1 6.22E-7 -1--0.9
p=0.15, 02534 & 000 1.9, T 14 0807
0.00 0-0.001 ‘00 050, 1.08E-3 -0.7 - -0.6
0.00 -0.8--0.7 : -0,
0.00 0,001 - 0,05 000 070k 8.37E-3 0.6 - -0.5
0.00 0.05-0.1 |a 0. 0.05 -0.5--0.4
0.00 -0.6--0.5| = .05 -0.5--0.
I 0.1 - 0.2 0.00 -0.5 - -0.4 0.27 -0.4--0.3
0.00 0.2-0.3 000 0404 [ | 1,12 0.3--0.2
0.00 0.3-0.4  |— 000 0s o I 3.87 -0.2--0.1
0.00 0.4-0.5 000 00 ] 10,61 -0.1-0
0.00 0.5-0.6 000 010 | 20,85 0-0.1
0.00 0.6-0.7 oo a-o1 H | 26,49 0.1-0.2
Q00 07-DE I .1 - 0.2 5 20.85 0.2-0.3
00 0.8-0, 000 0203 10.61 0.3-0.4
000 0E-1 v 000 0504 §_measured ] 3.87 0.4-0.5
0.00 0.4-0.5 ! 141 05-2
0.00 0.5- 0.6 e
0.00 0.6-0.7
A P(Sm 1Sy So2) = N(Sy, S52)



https://en.wikipedia.org/wiki/Waveform

BN: Modeling Uncertainties in Distance Measurements

Proper Modeling of Noise in Measured Variables (O _LAT = |ateral offset to lane marking)
- Probability of sensor measurement: as Normal (Gaussian) distribution
P(Sm 1Sy, Sg2) = N(S,,, S52), where S, = measured sensor value,
S, = mean of expected real value under measurement

S 2= variance of the measurement (sensor noise)
. P(O_LAT_MESS) = Normal (O_LAT_REAL, O_LAT SIGMA * O_LAT SIGMA)

Hugin Researcher 9.0 E

®

File Data Edit View Network Options Windows Wizards Help
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| o_lat_real | o_lat_sigma | o_lat_mess [
T *
Expression Normal (O_LAT_REAL, O_LAT_SIGMA * O_LAT_SIGMA) o lat real m o lat Sigma ‘%
o_lat_sigma 0-0.001 Uy UDTUA O N
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Of s 4 BN: Modeling Uncertainties in Velocity Measurements

/:L;T Proper Modeling of Noise in Measured Variables (V_LAT = lateral velocity towards lane marking)
'-» » Probability of sensor measurement: as Normal (Gaussian) distribution:

V]t P(Sm 1Sy, Sg2) = N(S,, S52), where S, = measured sensor value,

S, = mean of expected real value under measurement

S 2= variance of the measurement (sensor noise)
. P(V_LAT_MESS) = Normal (V_LAT_REAL, V_LAT SIGMA * V_LAT_SIGMA)

3__;] sensor_V_LAT_uncertainty ] |at Sigma |% ” Iat real m
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Build the hypothesis by combining the two BN models of sensor
uncertainties for lateral velocity and lateral offset to lane marking

Lateral Movement
Lateral Evidence
(LE)

=
N
/ b
/ \ N\

Try to model it in 3 different ways:

1) qualitatively: based on experience as in the previos pages 12-14
2) Learn the BN model from data, as explained in pages 22-25 (see next pages)

3) Change in the learned BN model the conditional probability tables (CPT) to the expressions as described in p.18-19

| V_LAT MESS | O_LAT MEss | LE |
Expression  Normal (V_LAT_REAL, V_LAT_SIGMA * V_LAT_SIGMA)

<
V_LAT_REAL -1--0.9
V_LAT SIGMA|0 - 0.001/0.001 -...|[0.05 - ...||0.1-0.2||0.2-0.3//0.3-0.4//0.4-0.5/ 0.5-0.6/(0.6-0.7/0.7-0.8//0.8-09| 09-1 | 1-1.1 ||1.1-
B _inf - -1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
L
A w
O_LAT_REAL
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Use the learning Wizard to
learn BN model structure and
parameters from data

- Offnen data file
- load data

[DataSource Data Source
Nodes Summary

Feature Selection

Structure Constraints

Structure Learning

Structure Uncertainties

Data Dependences

Prior Distribution Knowledge

EM-Learning
O
Select file
| | Browse
O Offnen
Suchen in: | SimulatedCases OOBN_LC ¥ 4 a 4 | !
Name 4 | GroBe Typ Geandert Attri...
-" full_bnt_only le_unc2_LE TRA... 3 MB DAT-Datei 30.11.21, 19:41
[T LE gw_.dat 571 KB DAT-Datei 30.11.21, 18:38
-" occgrid_gw_.dat 977 KB DAT-Datei 30.11.21, 19:12
™ 0OBN_LC_dk_gw50000.dat 13 MB DAT-Datei 28.11.21, 14:33
™ OOBN_LC_dk.dat 13 MB DAT-Datei 25.11.21, 09:04
M TRA) gw_.dat 868 KB DAT-Datei 30.11.21, 19:26
Dateiname: iLEfgwﬁ.dat
Dateityp: ;Text Data File (.DAT/.CSV/.TXT) "
Offnen Abbrechen

Reset || Load File

Finish

I‘—.
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Use the learning Wizard and learn BN model structure and
parameters from data

DatalSource

Nodes Summary
Feature Selection
Structure Constraints
Structure Learning
Structure Uncertainties

Data Dependences

Help

Data Source

W o N A W= O

(R
= O

- = =
J bW N

V_LAT_S...
3.0
3.0
1.55
0.55
1.05
1.65
0.75
52.0
0.75
1.95
0.95

0.8500000...

1.05

0.8500000...

V_LAT_M...

-0.55
-0.999

-0.850000...
-0.850000...

-0.25
0.9

-0.999
-0.45
0.7
-0.999
-0.95
0.9
0.05
-0.999
-0.999

O_LAT_M...

1.1
-0.999
0.7

0.1500000...

1.9

0.1500000...

-0.999
1.9
-0.25
-0.55

-0.850000...

1.5
-0.75

1.2999999...
0.1500000...
1.7000000._.

O_LAT_R...
0.3000000...

-0.55
0.7
-0.25
-0.75
1.9
0.05
1.9

-0.649999...
-0.850000...

-0.75

1.2999999...
0.1500000...

1.1
0.5
1.5

LE
false
false
false
false
false
false
false
false
true
true
false
false
false
false
false
false

V_LAT_R...

0.7
1.1
-0.75
-0.05

-0.150000...

0.5
1.5
0.5

-0.649999...
-0.850000...
0.3000000...

-0.45
-0.45
0.5

-0.75
-0.75

O_LAT_S...
0.55

1.75

5.0E-4
0.8500000...
1.85

1.15

1.45

5.0E-4

1.65

1.75

0.25

0.55
0.6499999...
0.95

1.45
0.1500000._.

Reset

Load File

Next >

Save File

Finish



Use the learning Wizard and learn BN model structure and
parameters from data .

ig Data Source Structure Constraints
Nodes Summary Please specify any known dependences or independences in the data set.
Feature Selecti oy -} C C
R el Nodes Summary bt 2B v PP QQoar
mm Labelled LE Structure Learning
. Structure Uncertainties

Feature Selection Dara BN

Structure Constraints hikifaiacsady dfa RESLSIRTIE= Prior Distribution Knowledge

Structure Learning Numbered v O_LAT REAL EM-Learning

Structure Uncertainties @

Data Dependences Numbered ¥ O LAT SIGMA

Prior Distribution Knowledge Numbered v V_LAT MESS

EM-Learning

Numbered ¥ V_LAT_REAL
Numbered ¥ V_LAT SIGMA
Analyse what is obviously wrong, e.g.
T Feature Selection Classification (labeled) variable
Feature selection can narrow the set of nodes.
Nodes Summary . .
is the result after inference

Feature|Selection Feature selection may be performed using different algorithms.
Structure Constraints Please select the one you wish to employ. H .
Sirucure Consel ey =» wrong causality need constraint
Structure Uncertainties Feature Selection fo rb i d i n g |t
Data Dependences Select target node .
Prior Distribution Knowledge 9 SEt COﬂSt ra | nt On meaSU re me nt:
EM-Learning

The measurement cannot influence the real value
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BN: Model learning with Uncertainties in Measurements

®

Data Source

Nodes Summary
Feature Selection
Structure[Constraints]
Structure Learning
Structure Uncertainties

Data Dependences

7 nodes O_LAT_REAL O_LAT_MESS LE
O_LAT_SIGMA V_LAT_MESS
V_LAT_SIGMA V_LAT_REAL relocated

2 Data Source Structure Constraints

A Nodes Summary Please specify any known dependences or independences in the data set.
Structure Constraints

) _ _ Feature Selection @ E_ k ( i%_ %? %P Q Q FIT |
Pl ki d d d d the data set. [l =
lease specify any known dependences or independences in the data sef

Eﬂ E_ W ( é(' %? %P Q Q FIT || Structure Learning

Structure Uncertainties

Data Dependences
Prior Distribution Knowledge

EM-Learning

4 Network Properties

Help

Display l Compilation l DBN l Auto Propagate I Monitors

< Back Next >
Groups and Colors l QOBN l Attributes I Description I Online EM Adaptation

_J NodeGroups] Link Groups l

Model con|

[ Discrete Chance Node
[0 Continuous Chance Node
[ Utility Node

[0 Decision Node

[0 Interface Node
[0 Instance Node
[0 Discrete Function Node
[ Function Node

Helf|

[0 Hypothesis

Measurement Up

Edit

Delete

Description
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Hypotheses for Maneuver Recognition under Uncertainties

LE, TRAJ, OCCGRID ¢
WZANA

Data LE: \ O @/(

V_LAT REAL,V_LAT MESS,V LAT SIGMA \)i

O_LAT REAL, O_LAT_MESS, O_LAT SIGMA

30
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Cognitive Hypotheses for Maneuver Recognition

Features combined into cognitive hypotheses to mimic human reasoning

x-direction4
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N}

€
jKT,i
=T,

Yy 619’

1 E {Objl, coog Objn}

A
I
I
1
1
|

é»l,i

Symmetric

Coordinate System

b)
.
Olat t
e
'L;

Vlat

Lateral
Movement
Lateral Evidence
(LE)

Trajectory

e

hi h
T%Ev S’;C“E

k k
TTDv STD

hr

6 U!lﬂrﬂ h’
vl,vr, hi, hr

Free Space

31




Hypotheses for Maneuver Recognition under Uncertainties

G
TRAJ

- A_LAT REAL, A_LAT MESS, A_LAT SIGMA

- PSI_TTE_REAL, PSI_TTE_MESS, PSI_TTE_SIGMA

- TLCR_LAT REAL, TLCR_LAT MESS, TLCR_LAT SIGMA

- Set the model structure to
represent the qualitative relations
in the model

- Introduce constraints where

necessary
- Learn this Hypothesis from data
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Cognitive (Knowledge-based)
Static Bayes model

Data and Artificial Intelligence for higher road safety | Prof. Dr. Galia Weid|
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Cognitive (Knowledge-based) modeling

e Parametrization:

— For logical cognitive variables: knowledge based hypotheses
— For basic hypothesis in the input layer: learned from data

*  Problem domain (output)

L LR | LIIRI LIIRI

The modeling of network structure is based on physical Models und logical
relation between the modeled variables

ILIIRI

LIIRI

§ o 8
g & =

LIIRI

e 88

2

2

2

1. OBJCUTIN 2. OBJCUTOUT 3. EGOCUTIN

4. EGOCUTOUT

5. OBJFOLLOW

| 6. LANEFOLLOW |

* Recognition logic is based on:
— relative position
— relative movement

Data and Artificial Intelligence for higher road safety | Prof. Dr. Galia Weid|
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Definition of a Lane Change Maneuver

3.LMC

e A Lane Change Maneuver is defined based on:
Vehicle-Lane-Marking relation

* Symmetric coordinates

e Three states:
1. FOLLOW: Vehicle follows the lane without

2. LMT
. ) g O
touching the Lane Marking '
.
;

2. Lane-Marking-Touch (LMT): Vehicle side
touches the Lane Marking

3. Lane-Marking-Cross (LMC): Vehicle mid
bumper crosses the Lane Marking 1. FOLLOW

®i®
left icht
x-direction ' ne

oo, = &

y-direction

Data and Artificial Intelligence for higher road safety | Prof. Dr. Galia Weid|
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4.7.1 Network Logic Layers

Output:
Probability distribution
over Maneuver Classes

F 3

Vehicle-Vehicle relation

F 3

Vehicle-Lane relation

F 3

Vehicle-Lane-Marking relation

F 3

Modeling of Uncertainty

F 3

Input:
Processed sensor data

Figure 4.5: Description of the logic layers (according to [14])
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Cognitive Hypotheses for Maneuver Recognition

Features combined into cognitive hypotheses to mimic human reasoning

x-direction4

|
3. LMG,

+ - ) |- —{+

|

|

|

|

I'. I
1. FoLow |
OHC :
|

|

left right

+ |-

y-direction

Lane Change Maneuver is

defined

by Vehicle-Lane-Marking relation

N}

€
jKT,i
=T,

Yy 619’

1 E {Objl, coog Objn}

A
I
I
1
1
|

é»l,i

Symmetric

Coordinate System

b)
.
Olat t
e
'L;

Vlat

Lateral
Movement
Lateral Evidence
(LE)

Trajectory

e

hi h
T%Ev S’;C“E

k k
TTDv STD

hr

6 U!lﬂrﬂ h’
vl,vr, hi, hr

Free Space
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Hypotheses for Maneuver Recognition under Uncertainties

TRAJ, OCCGRID (free space = a) b) c)
safety), REL_DYN | '
|

OCCGRID (TTE = Time to Enter;
TTD = = Time to Disapear)

- TTE_REAL, TTE_MESS, ' ' | '

r T = T |
TTE_SIGMA,

- same for TTD

. S_TTE_REAL,S TTE_MESS, Trg > 0,57 > 9 Tre <0,Ste <0 Tre <0,St7e <0

S_TTE_SIGMA; i
- same for S_TTD Trp >0,5rp >0

TTD>0;STD>0 TTD<O:,STD<0

Abbildung 4.9: Modellierung einer Freiraum-Hypothese. a)
Fahrzeug néhert sich der Zelle an. b) Fahrzeug
befindet sich in der Zelle. ¢) Fahrzeug entfernt
sich von der Zelle.
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Hypotheses for Maneuver Recognition under Uncertainties

TRAJ, OCCGRID (free space = safety), REL_DYN - Set the model structure to

OCCGRID (TTE = Time to Enter; TTD = = Time to Disapear) represent the qualitative relations
in the model

- TTE_REAL, TTE_MESS, TTE_SIGMA, same for TTD - Introduce constraints where
necessary

- S_TTE_REAL, S_TTE_MESS, S_TTE_SIGMA; sameforS_TTD - Learn this Hypothesis from data

@ OCCGRID_TTD

Data and Artificial Intelligence for higher road safety | Prof. Dr. Galia Weid| 40



Modelling of Lane Change Maneuvers with OOBNs

Idea

« An Object is described in 3 Motion Classes (L, R ,G). G=Gerade=Straight
- This gives for an Object-Object relation: 9 Relation Classes (LL, LR, LG, RL, RR, RG, GL,

GR, GG)

- Positioning of the reference vehicle (LEFT, RIGHT, INFRONT) results in 27 possible
Driving Maneuvers

LL

N

N

A
A\
|
N7
‘
LEFT
A

\

/
\

N

N

/7 \

L
:

CUT-IN Maneuver is one of all possible 27 Driving Maneuvers

N\

4

4

e

/

A
A
I
Y s

‘
RIGH

4

/7

4

~
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Modelling of Lane Change Maneuvers with OOBN’s

Modeling process
- Definition of symmetric lane coordinate systems (left, right) for each Object

» Design of OOBNs:

A
A /
/7 —=L,i LR
,7 lane 1 /exR,
,7 middle K0 K
i -!L,' —R.i
: Use of
e et | Symmetry!

Modelling of a Lane Change from the point of view of a lane coordinate systems
Classification of the Motion Class per Object: Motion towards the lane: left, right, st
Classification by O-O Relation Class: Relative Position of Objects to each other
« All Pairs as Relative Positions LRG — LRG

« (k=2-Permutation from n=3 Elements with returning back - n”k/'= 37
- Recognition of Driving Maneuver Situation in an Object-Object relation

Surrounding-aware Maneuver Recognition| Prof. Dr. Galia Weidl
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Modelling of Lane Change Maneuvers with OOBN’s

Situation features to Modell Lane Change Maneuvers

e distance to lane marking etime to cross the * occupancy time of a cell
lane marking
* lateral speed
* max usable
acceleration

¢ lane orrientation error

{1 {1 \

Laterale Evidence (LE) Trajectory (TR) occupancy grid (OCCG)

Surrounding-aware Maneuver Recognition| Prof. Dr. Galia Weidl
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Object-orriented

Bayes Nets



Object orriented Bayesian-Networks
OOBN:

A Bayes-Net is designed hiercicaly in layers

* Each Layer involves Incapsulations of BN-Fragments to Instance nodes
* Definition of IN- and OUT-puts per Instance

* Transfer of Information from one Instance to another

/“Instance AT ™\
) @ ©

oA 00

o J

S

Advantages:
- Reuse of Instances
» Structured, modular und easily extendable




Object orientierte Bayes-Netze
Bayes Nets vs. OOBN
* Lack of overview

* Hard for changes in multiple objects and for extentions
A11 A12 A21 A22

@g@ @g @: @g

B! B2

Instanz A
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Hypotheses for Maneuver Recognition under Uncertainties

/ Trajektorie \

/ Laterale Evidenz \

Laterale Evidenz

/ Freiraum (Objekt 1) \

Uberschreitung einer
Spurmarkierung

f Freiraum (Objekt 2) \

Spurwechsel-
moglichkeit

Abbildung 4.15: Hypothese Ubeschreitung einer Spurmarkie-

Data and Artificial Intelligence for higher road safety | Prof. Dr. Galia Weid|
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Modelling von
Lane Changen
with OOBN'’s



Modelling of Lane Change Maneuvers with OOBNs

(LL,..

Overview of OOBNs for Recognition of a Lane Change :

ﬂCUT-IN,
CUT-OUT,

Beziehungklassen

/” Y//
(LEFT, RIGHT,
-~ “INFRONT)

-

(L, R, G)

Uberschreitung der
Spurmarkierung (Links)

Uberschreitung der
Spurmarkierung

~

Uberschreitung der
Spurmarkierung (Rechts)
Uberschreitung der
Spurmarkierung

\_

- v
Uberschreitung der
Spurmarkierung

Belegungsgitter

Laterale Evidenz
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Modelling of Lane Change Maneuvers with OOBNs

Crossing of a lane marking
Generation of Lane Change Hypotheses and Free Space hypothesis
Aggregation into one Main hypothesis

Treatment of Uncertainties in Measurements

Lane Change Hypotheses
and Free Space hypothesis

Treatment of Uncertainties <
in Measurements

Y4

Uberschreitung der
Spurmarkierung

Laterale Evidenz

Belegungsgitter

@) (o
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Modelling of Lane Change Maneuvers with OOBNs

Treatment of Uncertainties in Measurements
Modelling of noisy measurements as Normal distribution
Smess — Se’rw + Srauschena Srauschen ~ N(O: 802)

Hard Evidence — as input of the computed Situation features Smess and their Variances S,2
Computation of their expected values (Probability of real values) s_,.,,

a_lat_mess [

0.00 -inf--1.5
000 -1.5--1.25
0,00 -1,25--1

o

o

=
=]
~
i

cpooooooo
oooooooo o
o s e |

o_lat_sigma

0_lat_erw [ o_lat_sigma <]
p=-0,87, 02=0.01 =0.08, 02=0
0.01 -1.5--1.25 0.00 0-0,001
11.93 -1,25- -1 0.00 0.001 -0.05
#6.11 -1--0.75 N .05 - 01
11.93 -0.75--0.5 0,00 0.1-0.1
0.01 -0.5--0.25 0.00 0.15-0, 2
1.376-7 0.25-0 0.00 0.2-0.25
4,87E-15 0-0.25 0.00 0.25-0.3
4,52E-25 0.25-0.5 0.00 0.3-0.5
9,06E-38 0.5- 0,75 0.00 0.5-0.7
3.51E-53 0.75-1 0.00 0.7-1
2.48E-71 1-1.25
31E-92 1.25-1.5
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Modelling of Lane Change Maneuvers with OOBNs

berschre..) berschre.. berschre ... berschre...
Spurmark.. purmarki.. purmarki.. purmarki..

W m
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Results
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Results

Unified Representation of a Scene by the worled modell

Recognition of Lane Changes with OOBN
— simple Design

— modular, easy extendable

Integration of the Driving Maneuver Recognitionmoduls on thelmage
Processing-PC of the vehicle

— Cycle time ~ 2 ms per Object relation

Use of Learn methods to Parameterize the Bayes Nets
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Cognitive Model Structure and Layers for
Situation-aware Maneuver Recognition

vehicle-vehicle relation m
Lane Chane LC_OBJ1 LC_OBJ2

LEFT L; RIGHT R; FOLLOW F L;R; F
|
. ] | |
vehicle-lane relation LANEMARKCROSS LANEMARKCROSS MANEUVER ADVICE | Same structure
LMC_Left LMC_Right Need for LC as for OBJ1
_e 8 Tk Longitudinal
s2g o LE — : | RELDYN
Sg¢s 5 RD :
“ 38— TRAJ ~ TRAJ (R0} :
vehicle-lane-marking| : " 5| loccGriD. | 'occGrib. | | saFErD
relation R 0BJ1 - oB ~ (SRD) LEFT
[} g - 5| eseeeemsessssssssssssssssssssssssssmssmssssEssEssEEsEEsEEEREsEsERsEREEEEEE,
& v OCCGRID OCCGRID x : . . 3
"¢ 1 oBz o)z | SAFERD : Modeling of uncertain data (var = 0?):
o (SRD) RIGHT : : : :
....... 3o stersrsrrrrct ol B sensor measurements, fused,
Hypotheses: Hy, Hito ] Hipoo i+, comeuteddata (numeric, labeled)
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Object Oriented Bayesian Network (OOBN)

Bayesian Network in terms of classes and objects

Reduces modeling complexity of BN in large complex domains

by model library of fragments (for repetitive modelling elements)

Allows BN fragments to be reused in similar situation context

Enables easy modification in network design without disturbing the whole network

Easily extendable

(. ) @ )

s

Modeling of uncertain data Evaluation of hypotheses Modeling of Events
Class: level S Class: level H Class: level _E
(with k instances of level S) (with n instances of class level H)

Surrounding-aware Maneuver Recognition| Dr. Galia Weidl | RD/ASF| 2018-06-12
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Object Oriented Bayesian Network

Bayesian Network in terms of classes and objects

Reduces modeling complexity of BN in large complex domains

— by model library of fragments

Allows BN fragments to be reused in similar situation context

Enables easy modification in network design without disturbing the whole network

Easily extendable

\_

(. )

s

Modeling of noisy data

Class: level S

Evaluation of hypotheses Modeling of Events
Class: level _H Class: level _E
(with k instances of level S) (with n instances of class level H)

Situation Interpretation by Bayesian networks| Dr. Galia Weidl
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Maneuver Recognition: OOBN Hierarchical Abstraction Levels

f Modeling of Driving Maneuvers

Decision on Event: Class MNVR

(Vehicle-Vehicle-Relation) MNVR

t

Decision on Event: Class LC

' Modeling of Lane Change Maneuver (

. (Vehicle-Lane-Relation) LC

Modeling of Lane Change Behavior
Decision on Event: Class LMC or Ml
*Lateral relative dynamics: LMC

~ *Longitudinal relative dynamics: Maneuver Intention(Ml)

3 [ we e R
CH, . H,

; _
" Evaluation of hypotheses: Class H,; (2 M R
H, , = {LE, TRAJ, FS (OCCGRID1, OCCGRID2)} T
_H,,={RD, SAFE_RD} : Y LI )
Modeling of noisy data (var = 2 1. o2
Measurements: Class S o ~
Inference on real value u \ \i/

Situation Interpretation by Bayesian networks| Dr. Galia Weidl
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Dynamic Bayesian Networks for Early Maneuver Prediction

Model the observed Trends by Causal Relations between the time steps & Transitional Conditional

Time t

O(t+1)=0(t)+v(t)-dt + N,
N = white noise N(0,0°) due to
possible acceleration term
(a-dt?)/2

DBN = Dynamic Bayesian Network

Time t+1

Probability

DBN > New Challenges:

= Memory

= Computation time

= Prediction horizon

=2 Need for efficient inference
algorithms for DBN

o2

Situation Interpretation by Bayesian networks| Dr. Galia Weidl 59



Cognitive Systems by Bayesian Networks

The network structure reflects relations from physical models and logical relations between the variables
Knowledge-based Structure with recognition logic based on:
— relative position
— relative movement
to lane marking; to lane; to surrounding vehicles
Vehicle-Vehicle relation = One Model for all maneuver states as 6 classes (= elementary maneuvers):
— ObjCutln; ObjCutOut; EgoCutin; EgoCutOut; ObjFollow; LaneFollow
Parametrization based on knowledge and adapted by data:
— For each logical variable: knowledge based growth function (sigmoid/logistic functions)

— For basic hypothesis in the input layer: learned/adapted from data

Surrounding-aware Maneuver Recognition| Dr. Galia Weidl | RD/ASF| 2018-06-12
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Structure

O 0 N o U s W NN BRE

Bayes Network

Development Environment
Knowledge-based static Model
Trend Analysis

Dynamic Bayes Model

Naive Bayes Model

Evaluation Results

Summary

Future development

Data and Artificial Intelligence for higher road safety | Prof. Dr. Galia Weid|
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Early Recognition/Prediction of Needed Lane Change Maneuver

Scenario 1: Observed behavior during lateral relative dynamics towards the lane marking. It allows early
recognition of beginning lane change (LC) before crossing the Lane Marking.

Scenario 2: Intended behavior due to longitudinal relative dynamics between following and front vehicles
on the same lane: car drives on a highway at constant speed. It allows to predict early a needed LC

Lane-change

End point
Lane-change
prediction time PR Bl

= Time gain before ~
Lane mark crossing

¢

Lane-change
Start point

obj1

Lane-change

prediction point  Actyal lane-change point
(lane marking crossing)
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Dynamic Bayesian Networks
for Lateral and Longitudinal Relative Dynamics

XgeL rea(t) ~ NXrer gear(t-1) + Vrer reac(t-1) "At, oy y?)

A_LAT_VAR

(uarmees)

Qo

O_LAT_VAR O_LAT_REAL
O_LAT_MEAS ‘

LE_DBN —>By analogy: REL_DYN_DBN

Time t-1 i Time t
i
i
A_LAT_REAL :
:
1
1
1
i
V_LAT_REAL : »( V_LAT REAL
1
1

1
[]
1
i O_LAT_VAR
i
]
1
1
Lateral Evidence ) |

<> —Hypothesis

O -Evidence < -Hidden node

Lateral features:
LE DBN: 2T-DBN structure
for the hypothesis LE (Lateral Evidence)

Agel_rea(t) ~ N(AreL gear(t-1), 0a?)

»(  A_LAT_REAL @

O_LAT_REAL @

@ Lateral Evidence

for Lateral Relative Dynamics towards the lane marking

Time t-1
A_REL_REAL

VeeL rear(t) ~ N(Vrer reac(t-1) + Arel pear(t-1) "At, oy ?)

Time t

»( A_REL_REAL

@ V_REL_REAL

X_REL_REAL

»( V_REL_REAL

REL_DYN_V_REL

REL_DYN_X_REL
> —Hypothesis

< —Evidence
< —Hidden node

Relative Dynamics
, R, F

Longitudinal features:

<2

»( X_REL_REAL

REL_DYN_V_REL

REL_DYN_X_REL

Relative Dynamics

REL_DYN_DBN: The 2T-DBN structure

for the hypothesis REL_DYN (RD)
(Longitudinal Relative Dynamics)

with A_REL_REAL as hidden node

Surrounding-aware Maneuver Recognition| Dr. Galia Weidl | RD/ASF| 2018-06-12 64



Relative Dynamics & Safety

Data: REL_DYN + SAFE_REL_DYN
V_REL_OBJ_MESS, V_REL_OBJ_VAR
X_REL_OBJ_MESS, X_REL_OBJ_VAR
V_REL_EGO_MESS,X_REL_EGO_MESS

Real value of
relative distance

Real value of
relative velocity

Variance (a)? Variance (oy)?

of relative velocity,

of relative distance
XREL_MEAS

of relative velocity
VREL_MEAS

X_REL_FRONT, V_REL_FRONT,
T_REL_FRONT

X_REL_BACK, V_REL_BACK,

elative Dynamics
REL gYN True/False T_REL_BACK

Lane-change

End point
Lane-change
prediction time == ————— -

= Time gain before -
Lane mark crossi%/

Same structure
as for FRONT

Lane-change 7

Lane-change

prediction point  Actual lane-change point m O — Evidence
(lane marking crossing) SAFE RD

(O - Hidden node TF

65
Surrounding-aware Maneuver Recognition| Dr. Galia Weidl | RD/ASF| 2018-06-12



Cognitive OOBN with lateral and longitudinal dynamics

MINVR domain ___ OBJ_CUTIN Co.rr.lputatlonally trac’fable solution uses D|V|de&Conquer to sp!lt the
MNVR _osJcutout original OOBN model into BN-fragments = performs inference in
OBJ,_FOLLOW i : .
LL, LR, LF / LANE FOLLOW each BN-fragment and uses the inference results as likelihood at the

Lateral Relative

Dynamics

next level
KK v ;f
ront

t
» T /; ~._position oBJ1 [ 0BIZ
LR, F_ LR E

Lane Change (LC)
eft L, Right R, Follow F

LC _OBJ, LC OBJ, LEFT RIGHT
Lane Marking Maneuver Lane Marking
Cross (LMC) Advice (MA) Cross (LMC)
Longitudinal Relative
e Dynamics
Lane Marking domain Maneuver LR F MA .
Cross (LMC, Advice (MA) domain
Safe
H,,

Longitudinal
Relative Dynamics
REL_DYN (RD

Safe_RD (SRD)
Right

LMC FS LMC_FS
Ob}ECt 1 Object 2 Safe_f;t{SRD)
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Testing of Bayesian Network Performance
for Maneuver Recognition

The developed scalable software system for maneuver recognition has been implemented/transferred on
the Linux target platform, emulating the automotive platform of the experimental car.

The car is used to collect streaming data and to test the developed algorithms.

The best performing classifiers - selected as trade-off between high accuracy and prediction time, based on
— optimal initial guess,

— learning and adaptation of parameters in the models,

— linear and logistic regression.

The framework has been deployed on the prototype car and tested both statistically and during driving on
real highways in Germany and Luxembourg. Proven feasibility of approach to required accuracy and
prediction time for DBNs with adaptation and using save-to-memory, instantiation junction tree techniques
and the divide-&-conquer approach.

Recognition performance - visualized in the user display - observed during the drive on the highway.
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Testing & Evalutation Results

How to test the system performance? Use statistical evaluation.
* Clean the test data set of 350 sequences (balance: 50% Lane Change + 50% Follow)

» Evaluation is based on the time point of lane cross, which is marked in the data (annotation)

Trend Analysis: Performance with Logistic Regression

Classifier\Performance Lane Change Follow Time gain [sec]
Lane Change Follow Time gain [sec]
ORIG OOBN 96.1% 98.3% 0.77
ORIG OOBN (opt param) 98% 100% 1.05
DBN_4fragm with LogReg 98.9% 100% 1.13 99.4% 98.4% 1.29
STAT with LinReg & LogReg 99.4% 96.2% 1.40 99.4% 88.6% 1.54
(Dynamic) NaiveBN 99.4% 55.2% 2.13

* Network parameters of the knowledge based structures are learned from a (big) data set, collected in real highway driving

* Only learning (DNaiveBN without knowledge ) is not accurate enough for Follow; Good (time gain) recognition of Lane Chang
* Trend analysis - uses logistic regression approaches for early recognition

* Extension to DBN improves both accuracy and recognition time gain

* Demonstrate feasibility: System deployment on experimental vehicle and test in real highway drives
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When to use Bayesian Networks to the nature of the problem to ensure,
that probabilistic networks are an appropriate choice of method?

Highly structured domain with cause-effect relations
* Detailed knowledge about structure and probabilities (can be also learned from data)
* (causal) relations among the variables, the conditional probabilities quantifying the relations.
» Static structure (qualitative relations remain), but drifting probabilities
* The variables and events (i.e., possible values of the variables) of the problem domain must be well-defined.
Possibly different sources of uncertainty with known relations among the variables
* Incomplete knowledge,
* Noisy observations/measurements,
* Abstractions of information

Efficient solution of queries given evidence and (conditional) dependence and independence relations



When to use Bayesian Networks over other machine learning approaches?

Assume you have a set of inputs, X, and outputs Y.

Bayesian Networks (BN's) are generative models, i.e. allow to learn the joint probability distribution of data P(X,Y),

which is more difficult than learning the conditional probability distribution P(Y|X)P(Y|X) for (discriminative models), e.g. logistic regression or
Support Vector Machine,

Generative models are more versatile, where you can run queries such as P(X1|Y) or P(X1|X2=A,X3=B), etc. With the discriminative model, your
sole aim is to learn P(Y|X)P(Y|X).

Advantages:

1.When you have a lot of missing data, e.g. in medicine, BN's can be very effective since modeling the joint distribution (i.e. your assertion on
how the data was generated) reduces your dependency in having a fully observed dataset.

2.When you want to model a domain in a way that is visually transparent, and also aims to capture cause—>effect relationships, BN's can be very
powerful. Note that the causality assumption in BN's is open to debate though.

3.Learning the joint distribution is a difficult task, modeling it for discrete variables (through the calculation of conditional probability tables, i.e.
CPT's) is substantially easier than trying to do the same for continuous variables though. So BN's are practically more common with discrete
variables.

4.BN's not only allow observational inference (as all machine learning models allow) but also causal interventions. This is a commonly neglected
and underappreciated advantage of BN's and is related to counterfactual reasoning.

* In the advantage 1 where you say BNs are effective for modelling data with lots of missing values, don't these missing values affect the correct
identification of independencies in the data?

*Yes, while fitting the model you would still need to impute with some assumptions, but once you have a structure for, e.g. P(Y,X1,X2)P(Y,X1,X2),
depending on the factorization of your DAG (that encapsulates your independence assumptions), you may not need X1 if X2 is already available,
or vice versa.

*In my experience, Bayesian Networks work very well when there is high dimensional categorical data. They give interpret-able models, which
(sometimes) aid in making sense of how the different variables interact.
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https://stats.stackexchange.com/questions/139728/when-to-use-bayesian-networks-over-other-machine-learning-approaches
http://www.cogsci.ucsd.edu/%7Eajyu/Readings/pearl_causal.pdf

Testing in the experimental cognitive car on highway drive
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Testing in the experimental cognitive car on highway drive
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DBN: adapted TCPT + 4 learned LE fragm

video_2015-11-02_103149_LINREG_DBN Mentionr—Clos FGO FOLLOW (:P - -]m)
Merge Situation for Truck

EGO_ID29 (EGOCUTIN_Right): TimeGain=2.28s before LMC
ID29 (OBJCUTOUT _Left) : TimeGain=0.72s before/LMC
ID26 (OBJCUTIN_Left) : TimeGain=1.68s before LMC

i}

1

]
L
il

A

Trenc FGO LFFT (P = QO0)

[HWA_LANE_LOCKED SOL D] BV: lano widih = 3.83m / witih buffer = 3,83m [HWA_LANE_LOCKED BROKEN ]
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DBN: adapted TCPT + 4 learned LE fragm

video_2016-10-06_152205_LINREG_DBN
ID39 (OBJCUTIN_ : TimeGain=0.66s before LMC
ID10 (OBJCUTIN_F : 4rr|1le|(§aip=2.225 l*;ieforeﬂlLMC

\

[HWA_ 1 ANE_ 1 OCKED_BROKEN ] BV: lane width = 4.00m /

Intertion—Class: EGO FOLLOW (P = 1.00)
Trend: EGO RGHT (P = 000)

with buffer = 4.00m [HWA_LANE_LOCKED_SOL (D]
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video 2016-07-08 140327 LINREG_LElearned Merge.avi

video_2016-07-08_140327_LINREG_LElearnecTderge.avi: ID37 (ID6) hom 2 CHLECLLOW (R m 1000 s R
Time gain = 2.82 s, ObjCutIn ID37 (rec.frame 340, LMC at 487) Treek £DO BT 3.‘ unn}
Time gain = 1.08s, ObjCutin ID6 (rec.frame 43|5, LMC at 453)

|
L O - B —

"\.}L?. LR | -\_':'.I ."-\..-
"'"h_l : '1
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[HWA_LANE_LOCKED_BROKEN 3V: lane width = 3.684m / with buffer = 3.64m [HWA_ | ANE_LOCKED_BROKEN ]

[100%]
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video_2016-10-06_155434_LINREG_00_CutlnLong.avi . : SaIon (2 o I
OBJ_ID14 CutIN (far ahead of EGO)(rec.frame 8) #' i
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DBN: adapted TCPT + 4 learned LE fragm
=== Move : ORIFOLLON (P = 100 ID = 'I‘[)
Intertion—Closs: EI;O FOLIQW {r

video_2016-12-22_130733_LINREG_DBN_LE4fragm
O3 FOION (P = 078)

_learned_TCPTocc_00_OBJCUTOUT_ID11_RELDYN_130-300.avi '.
' o Trend: FGO LEFTg - ;

—>REL_DYN starts signalizing:
OBJ_ID11 needs lane change at frame t=131

- t= 233 lateral dynamics trend
recognizes the initiated lane change

- t=243: LMC
Time gain for LE = 0.6s (10 cycles)
Time gain for REL_DYN =6.

AN

[HWA_LANE_LOCKED_ BROKEN] BV: lano widih = &.78m / wiih buffer = 3.7/5m [HWA_LANE_LOCKED BROKEN ]
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DBN: adapted TCPT + 4 learned LE fragm

Move : [LANEFOLLOW (P = 100 D = 29)
Intertion—Class: EGO FOUDW (P = 0.76)
OBl RGHT (P = O52)
Trend: EGO LEFT (P )
oBJ LEFT (P

‘due tc
with higher speed™+
a front vehicle

> Initiated maneuver trend recognized
at t=157-> time gain117 time cycles
7.02 earlier than actually performed

VIC at t=172:
Maneuver intention recognized
(7.92) sec earlier than 4

star (EGO) crosses theby.rking

LANE_| OCKED BROKEN] BV: lane width = 4.22m / with buffer 4. 22 [HWA_LANE_1 OCKED_SOL D]
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Intentlon=Cloez: EGO FOLLOW (P = 081)
Tret EGO LEFT (P = 000)

W A

raag. | A [ [=F P -4 "
PRl _”;J - —rr, Ny ®

"'-l._------ R
x - T -

Stixels used

Mhawmd VHA
HwaA_LANE_LOCKED_SOLID gy: lana wldth = 3.84m / with buffar = 3.B4m HWA_LANE_LOCKED_BROKEN
100%




OBJ_ID20 Truck Cutln 2 dt=1.32 s (rec.fra

Explanations of Conclusions:

Obj_ID20: Truck Cutln in front of EGO due tgi,)_ Vi
EGO brakmg for safety & comfortability at tf

] Nom @ CRFTLLOW <00 0 -ﬁ'lﬂﬂ
video ReIDyn N 5 bt e %F:u.:m = 100
OBJ_ID4 car CutOut ' CR LEFT (7 =

- dt =3.66ssufrec.frame 220 (RelDyn), EMC at 250)
= dt =2.4s (rec.frame 230(beg.), LMC at 25 |

EGO CutOut

dt= 85(rec frame 269(beg.), LMC at Z/BO)J ‘ \

OBJ_ID4 car CutOut - dt = 1.68 s (rec.frame 324, LMC at 35




Summary: Situation Interpretation in Cognitive Cars

We developed a scalable system approach for surrounding-aware maneuver recognition, realized as
combination of

 Knowledge Representation by hierarchical dynamic object-oriented Bayesian Networks

* Machine Learning (from real highway data) for improvement of recognition performance of the
dynamic model by use of EM learning or sequential adaptation

It demonstrates Stable Trend Analysis
* achieved by integrating knowledge and data in the models & logistic regression on the trend
* meeting the automotive requirements on accuracy and prediction

e system transparency by explanation of conclusions.,

System is successfully deployed and tested in the experimental cognitive vehicles in real traffic.
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Questions?

Thank youl!
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