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Abstract— In this paper we introduce a novel approach
towards the recognition of typical driving maneuvers in struc-
tured highway scenarios and identify some of the key ben-
efits of traffic scene modeling with object-oriented Bayesian
networks (OOBNs). The approach exploits the advantages of
an introduced lane-related coordinate system together with
individual occupancy grids for all vehicles. This combination
allows for an efficient classification of the existing vehicle-
lane and vehicle-vehicle relations in a traffic scene and thus
substantially improves the understanding of complex traffic
scenes. We systematically propagate probabilities and variances
within our network which results in probabilistic sets of the
modeled driving maneuvers. Using this generic approach, we
are able to classify a total of 27 driving maneuvers including
merging and object following.

I. INTRODUCTION

The interpretation and classification of traffic scenarios are
important key elements of modern driver assistance systems.
The challenges for these issues are incomplete knowledge,
scene complexity and sensor uncertainties. Thus the recog-
nition of driving maneuvers requires reasoning under uncer-
tainties. A number of approaches can be found in the litera-
ture that address this field of research, namely Dempster-
Shafer-Theory, hidden Markov models, or Bayesian net-
works.

The recognition of driving maneuvers (e.g. lane change,
object follow, overtake) and the degree of driver’s atten-
tion have been studied by use of the Dempster-Shafer-
Theory [1], [2]. Similar problems (incl. driver intentions,
vigilance, turn maneuver, etc.) have been treated with hidden
Markov models [3], [4], [5]. Bayesian networks have been
utilized for the recognition of driving maneuvers like lane
change, overtaking or left turn maneuvers [6], [7]. They
have also been used to recognize turning maneuvers as well
as cross over at red traffic light [8], [9]. Other applications
of Bayesian networks involve cut-in maneuvers [13] and
emergency braking [10], or the prediction of driver behavior
(e.g. driver intention, driver stress) [11], [12].

Our pursued approach for the recognition of driving ma-
neuvers profits from the advantages of OOBNs to deal with
interrelated objects [15]. They offer a natural framework to
handle vehicle-lane and/or vehicle-vehicle relations. These
advantages are additionally boosted due to the exploitation
of the left/right symmetry of a lane-change-course. The
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causal probabilistic treatment of situation features allows
exploiting heterogeneous sources of information and the
quantitative incorporation of uncertainties in the measured
signals. Furthermore, they provide a framework for system-
atically structured “a priory” knowledge representation of the
problem domain. And finally, the object-orientated modeling
is efficient for exploring repetitive structure patterns. This
allows reusability through the building of model libraries
containing generic fragments of object-oriented Bayesian
networks (OOBN-classes).

In this paper we focus on the theoretical background of
our approach as well as its application for the modeling
and the recognition of driving maneuvers in longitudinal
traffic scenarios. Section II is dealing with the properties of
object-oriented Bayesian networks (OOBNs). In section III
we outline the features of a driving situation for the modeling
of lane change maneuvers and our approach to handle
uncertainties. In addition, we describe the developed OOBN
for the recognition of driving maneuvers. The corresponding
results and outlook for future work are summarized and
discussed in section IV.

II. OBJECT-ORIENTED BAYESIAN NETWORKS (OOBNS)

Bayesian networks (BN) are utilized for the representation
of non-observable events, inference on possible conclusions,
and represent specific characteristics of probabilistic models.
The advantage of such a probabilistic approach lies in the
capability to handle all uncertainties implicitly. Uncertainties
can originate from measurement noise in the sensor data as
well as from incomplete knowledge of complex dependencies
in real world situations. For example, due to complexity
reasons, not all maneuver variants can be modeled. Moreover
changes in the driving- and environmental conditions can
lead to uncertainties in the models.

A Bayesian network represents a directed, acyclic graph,
consisting of nodes and links, which connect the nodes.
The nodes represent discrete random variables X with n
states x1, ...,xn, together with their conditional probability
distributions (CPD). The links induce a set of conditional
in/dependence relations between the nodes. Thus the CPD
expresses the strength of the (causal) dependency relations
between the nodes in this model. These relations change
when the states of a subset of the nodes are known or
observed events (evidence). Evidence on a variable provides
information on its states and its conditional probability
distribution.
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Fig. 1. Hierarchical OOBN-layers for the recognition of driving maneuvers

Although the graphical structure of a BN expresses the
knowledge on causal in/dependencies between the variables,
it requires expert knowledge to build the network. This
has the advantage that a-priory knowledge of the problem
domain can be taken into account. The explicit exploitation
of causality allows a compact representation of the joint
probability for all the variables involved in the model.

The OOBNs possess the advantages of classic Bayesian
networks [14]. An object-oriented Bayesian network contains
instance nodes in addition to the usual nodes. An instance
node is an abstraction of a network fragment into a single
unit (network class) [15]. Therefore instance nodes can be
used to represent different network classes within other nets,
and they transmit all properties of the net fragment (encap-
sulation). Thus an object-oriented network can be viewed as
a hierarchical description/model of a problem domain. Every
layer in this hierarchy expresses another level of abstraction
in the OOBN model. This simplifies the modeling since the
BN-fragments at different levels of abstraction are easier to
discuss and to review.

III. MODELING AND RECOGNITION OF DRIVING
MANEUVERS BY THE USE OF OOBNS

In our approach we model driving maneuvers as object-to-
object relations, such as vehicle-lane relations and vehicle-
vehicle relations. These relations are modeled on four differ-
ent hierarchical levels of abstraction (Fig. 1). The first level
promotes to model the properties of sensor measurements
and delivers the evidence input data for the developed
Bayesian net. On the second level the vehicle-lane-marking
relations represent the likelihood that a vehicle crosses
a specific lane marking. These vehicle-lane relations are
modeled by exploiting the natural left/right symmetry of
lane change maneuvers. The next level takes all vehicle-lane
relations into account and evaluates potential lane-change
maneuvers. The combination of vehicle-lane-relations for
any two neighbor vehicles leads to 9 movement classes
at this level of abstraction. They represent the pairwise
relative movement of any two vehicles with respect to their
associated lanes.

All existing vehicle-vehicle relations are considered within
the fourth level. These vehicle-vehicle relations are used to
assess potential hazards and thus they represent all possible

relative positions between the considered vehicle pairs: to the
left, to the right or in front of it. This results in 27 feasible
driving maneuvers, which are recognizable by our OOBN.
The “cut-in maneuver” is just one from these 27 elementary
maneuvers.

The hierarchical structure allows a structured overview
and is an easily extendable design for the recognition of the
considered driving maneuvers. In the following section, we
will describe the four levels of abstraction in more details.

A. Modeling of sensor data

At the first level of our OOBN model we are using a
generic network class for the handling of uncertainties in
the sensor data. This data is used partly as direct evidence in
the OOBN model and partly as soft evidence for our defined
situation features, which are estimated by physical models.

In general, the measured signal smeasured is composed of
its real value under measurement sexpected and its disturbance
(sensor noise) serr around the real value, i.e. smeasured =
sexpected + serr. In many practical applications (and in this
work), the sensor noise is modeled as a zero-mean Gaussian
random process. In that case, the disturbance is fully de-
scribed by the variance serr = sσ2 . Thus the measured signal
is conditionally dependent on the random changes in these
two variables:

p(smeasured |sexpected ,sσ2) = N(sexpected ,sσ2)

where N(sexpected ,sσ2) denotes the Gaussian distribution.
Fig. 2 shows the structure of our network class for handling
of uncertainties due to measurement noise within a sensor
device.

Fig. 2. Model for handling of uncertainties in measured data

To deal with the uncertainties in the sensor signals and to
be able to distinguish between the states of deduced features,
the measured signals are discretized in predefined partitions.
Through the observation (evidence) of the variables smeasured
and their variances sσ2 , one obtains here the probability
distribution of their real values sexpected .

B. Modeling of the driving behavior during a lane change
maneuver

This section constitutes the background, which prepares
the BN model to mimic the human reasoning for maneuver
recognition. It starts with the observation and evaluation of
characteristic features, which are used to build the vehicle-
lane and/or vehicle-vehicle relations at the higher levels of
the OOBN. A model simplification is achieved due to the
observation, that a lane change towards the right or left is
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Fig. 3. A: Symmetric lane-coordinate-system for each vehicle; B,C,D: Situation features for a lane change maneuver, in the right coordinate system (B:
Lateral Evidence, C: Trajectory and D: Occupancy Grid)

symmetric from the point of view of a vehicle positioned
in the middle of its associated lane. To incorporate the
symmetry into the model, we have introduced for all n
observable vehicles {veh1, ...,vehn} the corresponding coor-
dinate systems:

Ks,i, s ∈ {L,R} , i ∈ {veh1, ...,vehn}

which are attached to the left/right (L/R) lane marking (or
road boundaries) (Fig. 3A).

Some suitable characteristic features were published ear-
lier [13]. Our approach represents a certain extension of this
work. The extension includes
• modeling and computation of the features for both left

and right lane-coordinate-system, (Fig. 3A)
• the new introduction of occupancy grids around a ve-

hicle, taking into account the occupancy time of other
objects in the grid,

• and consideration of the relative position of its neighbor
objects.

These are performed for all observable vehicles, recognized
lane markings or road boundaries.

In our approach, we use the following situation features:
• the lateral offset between a vehicle and a lane marking

os
lat , s ∈ {L,R} and the lateral speed vs

lat (Fig. 3B),
• the time to lane marking crossing T s

lcr, the lateral
acceleration as

latmax
as well as the head angle relative

to the lane course φ s
lane (Fig. 3C),

• the occupancy time spent by neighbor objects in a cell
of the occupancy grid T k

occ, k ∈ {l, f ,r,b, f l, f r,bl,br}
(Fig. 3D) and the relative position of neighboring vehi-
cles Posp, p ∈ {le f t,right, in f ront}.

Thus we obtain the following novel definition for the
feature vector F of a traffic situation:

Fs,i,k,p =
(

os,i
lat , vs,i

lat , T s,i
lcr , as,i

latmax
, φ

s,i
lane, T i,k

occ, Posi,p
)

,

where the indices s ∈ {L,R} denote the left and right lane-
coordinate-system, i∈ {vehicle1, ...,vehiclen} the considered

vehicle, k ∈ {l, f ,r,b, f l, f r,bl,br} the position of the occu-
pancy cells around the vehicle, and p∈ {le f t,right, in f ront}
the position of a neighbor object. Thus the feature vector of
the entire observable traffic situation has the dimension n ·21.

We base our computation on two different models rep-
resenting the vehicles behavior: a lane follow model and a
lane change model. The lateral velocity of the vehicle vs

lat
within the lane and the distance to the left/right lane marking
os

lat are calculated according to the lane follow model [16].
The maximum lateral acceleration of the vehicle as

latmax
is

estimated from the lane change model introduced in [17].
The latter is achieved by computing a non-linear fit of a
lane change trajectory in the points of the vehicles trajectory
history using Levenberg−Marquardt optimization. The above
mentioned values T s

lcr and φ s
lane (Fig. 3C) are derived from the

characteristics of the matched lane change trajectory. Here it
is assumed that the driving states of all observable vehicles as
well as the lane course are detected by the on-board sensors
and consequently can be considered as known.

The listed situation features are used to model the lane
change behavior as a relation between the considered vehicle
and its associated left (or right) lane marking. They are
combined into the three nodes: Trajectory, Lateral Evidence
and Occupancy Grid. We associate the same weights to these
basis hypotheses (to achieve more robustness if one sensor
fails). Their combination is expressing the probability for the
hypothesis Lane Marking Crossing (Fig. 4).

The node Lateral Evidence describes the driving state of
the vehicle in the lane (Fig. 4). The node Trajectory collects
situation features, estimated from the trajectory’s history. The
node Occupancy Grid describes the occupancy of the cells in
the grid around other objects during a certain time horizon.
If a cell is free for a predefined time, the vehicle can move
unobstructed towards this cell. To recognize a lane change
maneuver, one has to parametrize the nodes expressing the
above mentioned basic hypotheses. The parametrization of
these nodes is shown in Fig. 4 on the example of the node
Lateral Evidence. The parametrization of the conditional
probabilities for the other nodes is done by analogy.
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Fig. 4. OOBN instance modeling the hypothesis Lane Marking Crossing

The lateral velocity of a vehicle in its associated lane
vlat expected and its lateral offset to the lane marking olat expected
are estimated by the above represented model for handling
of sensor uncertainties (Fig. 2, Fig. 4). They collect the
discretized input data of the node Lateral Evidence.

The conditional probability of the node Lateral Evidence
P(LE|vlat expected ,olat expected) is modeled as product of the
two independent conditional probabilities P(LE|vlat expected)
and P(LE|olat expected). The last are sigmoid functions with
scaling parameters avlat ,bvlat ,aolat ,bolat , which are defined
as follows:

P(LE|vlat expected) = η · 1
avlat + exp(bvlat · vlat expected)

∀ vlat expected ∈ {−1.5,−1.25, ...,0.25,0.5}

and P(LE|olat expected) = η · 1
aolat + exp(bolat ·olat expected)

∀ olat expected ∈ {−1.5,−1.125, ...,1.125,1.5}

For simplification the indices s, i,k, p were omitted.
Fig. 5 shows the shape of the modeled conditional
probabilities P(LE|vlat expected), P(LE|olat expected), and
P(LE|vlat expected ,olat expected).

Fig. 5. Conditional Probabilities of the node Lateral Evidence

C. Modeling of Lane Change Maneuvers

For the recognition of lane change maneuvers, the hypoth-
esis Lane Marking Crossing (LMC) towards right or left are
modeled as vehicle-lane relations. These are shown by the
two instance nodes in the BN fragment. Instance nodes are
represented as rounded squares, while the output-interface-
nodes are represented as ellipses with shaded line borders
(Fig. 6).

Fig. 6. OOBN fragment for the modeling of lane change maneuvers

To model lane change maneuvers, we consider elementary
actions, which a vehicle can perform. It can follow the lane
( f ), leave the lane towards the left (l) or towards the right
(r). Since the hypothesis LMC is used for both left and
right lane marking crossing, one can identify three movement
classes (l,r, f ) of a vehicle, which are logically combined in
a node Lane Change. In the case of lane change towards the
right, the logical parametrization of the node Lane Change
reads:

LC = r ⇐⇒
(
LMCle f t = f alse ∧ LMCright = true

)
Besides the single states (l,r, f ) of the node LMC, their com-
bination (LMCle f t = true∧LMCright = true) is also possible
and has to be also taken into acount. In that case, the states
of Lane Change are characterized by a uniform probability
distribution.

D. Modeling of Driving Maneuvers

For the recognition of driving maneuvers one has to con-
sider also vehicle-vehicle relations R = (vehiclei,vehicle j),
i, j ∈ {1, ...,n} , i 6= j. These are expressed by elementary
driving maneuvers, as outlined below.

For the purpose of modeling the elementary driving ma-
neuvers, we introduce the two nodes Movement- and Position
classes (Fig. 7). The node Movement classes is classifying

Fig. 7. OOBN for modeling of elementary driving maneuvers. It contains
the hypothesis Lane Change as instance and the movement-, position classes.

the relative movement of a pair of vehicles towards their
associated lanes. The combination of all states given by
the nodes Movement- and Position classes results in 27
possible elementary driving maneuvers, which two vehicles
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Fig. 8. Showcases of a vehicle-vehicle relation vehicle1− vehicle2 (vehicle f ollowvehicle1,2 , cutoutvehicle2 , lane f ollowvehicle1,2 , cutinvehicle2 ).

can perform, as explained in section III. In this framework,
a cut-in maneuver is just one case out of the 27 possibilities.
It is defined as follows: The preceding neighbor vehicle is
moving to the considered vehicle’s current lane from the left
or right side i.e. cutting in. From here, one can deduce the
logical parametrization for the recognition of selected driving
maneuvers. In the following we list, as an example, the cut-
in and cut-out maneuvers for the considered vehiclei and its
neighbor vehicle j

cutinveh2 ⇐⇒ (LCveh1 = f ∧LCveh2 = r∧Posveh2 = le f t)
cutinveh1 ⇐⇒ (LCveh1 = r∧LCveh2 = f ∧Posveh2 = right)

cutoutveh2 ⇐⇒ (LCveh1 = f ∧LCveh2 = r∧Posveh2 = in f ront)
cutoutveh1 ⇐⇒ (LCveh1 = r∧LCveh2 = f ∧Posveh2 = in f ront)

Figure 8 demonstrates possible traffic scenarios consid-
ering the feasible measurements between a pair of vehicles
from the perspective of the ego vehicle. These maneuvers are
vehicle f ollowveh1,2 , cutoutveh2 , lane f ollowveh1,2 , cutinveh2 .
The probabilities, which were deduced as results for the
recognition of the driving maneuver, are depicted in the
second column of Fig. 8 for the four showcases.

IV. SUMMARY, RESULTS AND OUTLOOK

In this paper, we have represented an object-oriented
approach for the recognition of driving maneuvers with
OOBNs. The modularity and reusability of Bayesian net-
works fragments were simplified through the consideration
of two model properties: symmetric lane-coordinate-system
for each vehicle and pairwise defined object-object relations.
The hierarchical modeling allows the building of various
model libraries with generic OOBN-fragments. This leads
to models with good overview and easily extendable design.
Our approach allows to handle uncertainties in the model and
in the measurements. The probability distribution of certain
maneuvers between two vehicles can be read out from node
Driving Maneuver.

Future work will focus on the analysis of the performance
for the developed network and on possible improvements. In
order to detect lane change maneuvers at an earlier stage, one
needs situation features, such as blinker or shoulder check,
for earlier maneuver indication. These features can then
contribute to the Bayesian network and help to recognize lane
change maneuvers with a high reliability at an earlier stage.
Moreover one can adjust online the network parameters
depending on approaching either the lane marking or the
solid road boundaries. The last could be recognized earlier
in order to prevent crashing into the solid boarders. However,
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there will still be a trade-off between an earlier detection and
the false positive rate of our algorithm.

Moreover, we will study if the performance can be boosted
by the extension of the static network to a dynamic OOBN.
Since the parametrization of the network is time consuming,
learning algorithms can be employed. In addition, the recog-
nition of the criticality of an observed situation or maneuver
can be extended by physical models exploiting the relative
states (distance, speed, acceleration) between the vehicles.
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[14] F.V. Jensen, Bayesian Networks and Decision Graphs, Springer-Verlag,
2001

[15] D. Koller, and A. Pfeffer, Object-Oriented Bayesian Networks
(OOBN), In Proceedings of the Thirteenth Annual Conference on
Uncertainty in Artificial Intelligence (UAI-97), pages 302-313, Prov-
idence, Rhode Island, August 1-3, 1997.

[16] H.D. Dickmanns, A. Zapp. A curvature-based scheme for improved
road vehicle guidance by computer vision. In Proc. SPIE Conference
on Mobile robots, pages 161-168, 1986.

[17] H. Fritz, Patentschrift, Vorschrift zur Durchführung eines Fahrspur-
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