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Abstract: The increasing complexity of large-scale industrial processes and the struggle for cost reduction and higher profitability 

implies automated systems for processes diagnosis in plant operation and maintenance are required. We have developed a methodology to 
address this issue and have designed a prototype system on which this methodology has been applied. The methodology integrates 
decision-theoretic troubleshooting with risk assessment for industrial process control. It is applied to a pulp operation and screening 
process. The process is modeled using object-oriented Bayesian networks (OOBNs). Most abnormalities are derived from the context-
adaptive signal classifications with their enable and action events. The system performs reasoning under uncertainty based on multi-
sensor information extraction and presents to users corrective actions, with explanations of the root causes. It records users’ actions with 
associated cases and the OOBN models are prepared to perform sequential learning to increase its performance in diagnostics and advice. 
The system allows modeling during the design phase of a new plant, can provide guidance already in the start up phase and allows 
adaptation to process changes during plant operation. 
 
 

1. Introduction* 

In large-scale and complex industrial processes, a failure 

of the equipment or abnormality in process operation due to 

equipment malfunctioning is usually detected by means of 

hardware sensors. The process operator has to isolate the 

cause of a failure or abnormality by analyzing many 

sensors’ signals. The time until the failure source is 

identified and subsequently eliminated results in unplanned 

production interruption, which is the main source of cost 

increase due to lost production profit. The sheer amount of 

data and the continuity of the process require a high level of 

automation of operation and maintenance control. But not 

all operations can be completely automated. Often it is 

necessary to let a human operator steer the process in 

critical situations. This poses a formidable challenge on the 

concentration and capability of the human being and on the 

efficiency of his decisions. Therefore, the operator needs 

quick detection of early abnormal shifts, disturbance 
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analysis of process operation and identification of the most 

probable root causes. Simultaneously, the process overview 

should be maintained and relevant explanations provided 

with an advice on corrective sequence of actions. Under 

such circumstances, the operator can make educated 

decisions, based both on artificial intelligence and human 

experience. This should help avoid unplanned production 

interruption or at least ensure that the lost production is 

minimal.  

In general, a fault diagnosis system for industrial process 

operation should satisfy the following requirements listed in 

(Sohlberg, 1998; Vedam et al., 1999 and Dash et al., 2000): 

Early detection and diagnosis; Isolability; Robustness; 

Novelty identifiably; Multiple fault identifiability; 

Explanation facility; Adaptability; Reasonable storage and 

computational requirements. In the chapter “Validation with 

data”, we summarize the techniques by which these 

requirements are fulfilled by the system presented here. In 

addition, once a (expected) failure is identified, the operator 

should be supported with causal interpretation of diagnostic 

conclusions and with advice on corrective actions. This will 

help to recover the normal operation of the process as soon 

as possible.  

Weidl G., Madsen, A.L., Israelsson S. (2005), Object-Oriented Bayesian Networks for Condition Monitoring, Root Cause Analysis and 
Decision Support on Operation of Complex Continuous Processes: Methodology & Applications, Technical Report 2005-1, 36 pages 

IST- University of Stuttgart: http://www.ist.uni-stuttgart.de/reports/pdf/2005-1.pdf 
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Here, we focus on key aspects of process monitoring and 

root cause analysis and give concrete examples. 

Box and Kramer (1990) have discussed the roles of 

Statistical Process Control for process monitoring and of 

Automatic Process Control for process regulation. If only a 

classification of the failure type is required, neural networks 

or statistical classifiers may be more adequate. However, if 

decision support is needed, Bayesian networks (BNs) for 

probabilistic reasoning in intelligent systems can be used to 

calculate the posterior probabilities, e.g. (Pearl, 88; Cowell 

et al., 1999; Jensen, 2001), and BNs have the ability to 

adapt to changes (Spiegelhalter et al., 1990; Olesen et al., 

1992). In a pre-study, we have also considered neuro-fuzzy 

hybrid systems as an alternative approach. For an overview 

on the application of fuzzy systems for diagnosis and 

control of industrial processes see (Nauck et al., 1997). The 

neuro-fuzzy approach would not provide causal 

interpretation of diagnostic conclusions, which was one of 

the main system requirements for explanatory decision 

support on demand or continuously. The topic of supplying 

the user of a system performing reasoning under uncertainty 

using probabilistic reasoning in Bayesian networks with 

explanations has been considered by (Suermondt et al., 

1993) who use an approach incorporating entropy-based 

explanations and by (Henrion and Druzdzel, 1999) who use 

an approach incorporating scenario-based explanations. A 

probabilistic approach to fault diagnostics in combination 

with multivariate data analysis was suggested in (Leung at 

al., 2000-2002). Moreover, (Arroyo-Figueroa and Sucar, 

1999) have been using temporal (dynamic) Bayesian 

networks for diagnosis and prediction of failures in 

industrial plants. (Heger and Aradhye, 2002) have also 

applied Bayesian networks to diagnose sensor and/or 

process faults utilizing hardware and software redundancies.  

This paper contributes a combined object oriented 

methodology, which meets the listed requirements and 

incorporates various modeling and cost issues in industrial 

process control. The analysis and decision system comprises 

three main steps as shown in Fig. 1: 1) root causes analysis 

(RCA) in case of expected process abnormality; 2) decision 

support (DS) on corrective actions for process operation and 

maintenance; 3) time-critical DS for alternative actions. 
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Fig. 1. The hybrid system for Root Cause Analysis, Decision Support on efficient sequence of Actions and Observations, and 

DS on Urgency of Competing Actions for the same root cause 
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The proposed methodology is developed for a RCA & DS 

system and integrated in the industrial IT-environment of 

the plant (Weidl et al., 2002a-2003a). Here, it is 

implemented on a prototype system and applied to real 

industrial processes (pulp digesting and screening). 

The industrial IT-integration allows efficient 

communication with other IT-applications and with agents 

providing information from first level diagnostic solutions 

and physical models. This hybrid information is used for 

automated reasoning on abnormality in process operation 

The developed methodology is based on the combination 

of RCA and DS for operation of industrial processes. A 

precise description of RCA and DS is given in section 2.2, 

and the combination we have developed is given in section 

4.4.1. For DS, (Weidl et al., 2002b) have combined the 

algorithm for decision theoretic trouble-shooting (DTTS) 

with time critical decision support. DTTS was first 

proposed in (Kalagnanam et al., 1990) and further analyzed 

in (Heckerman et al., 1995). (Weidl et al., 2002b) have 

applied an Influence Diagram (ID) for time critical decision 

support on the urgency of competitive actions for the same 

root cause. An ID is an extension of a BN with utility nodes 

and decision nodes, which are ordered in a directed path 

(Jensen, 2001); alternatively one can use LIMIDs (new 

feature of Hugin™, which allows unordered decisions and 

“limited” memory).  

 

The main contributions of this work include:  

• The system design for RCA & DS, incorporating the 

probabilistic reasoning agents for handling of 

uncertainties and reflecting the information flow.  

• The development of a pressure-flow network as a 

physical (non-causal) model of the process behaviour. 

It provides soft sensor (non-measurable) information 

for evidence in the reasoning under uncertainties. 

• The use of OOBNs for RCA & DS in process operation 

to ensure causal modeling of interdependency of events 

and to provide explanations with overview at different 

levels of industrial plant hierarchy;  

Models reusability, simple construction and modification 

of generic BN-fragments, reduction of the overall 

complexity of the network for better communication and 

explanations, were other selection criteria in favor of 

OOBNs (Koller et al., 1997).  

• The development of an OOBN model for adaptive 

signal classification by mixture models and prediction 

of the development of signals' level-trend.  

• OOBN for risk assessment of disturbances, estimation 

of their most probable root causes for predictive 

maintenance on demand. 

• The construction of OOBNs for RCA of process 

operation. 

• A case study with real process data 

• The RCA System integration in the industrial IT 

platform for efficient data exchange with DCS 

(Distributed Control System) and various IT packages. 

• The methodology for decision support including 

corrective actions and cost issues 

• The adaptive learning from feedback and its associated 

cases on process condition. 

2. Targeted Problem 

Disturbance analysis or Root Cause Analysis (RCA) in 

industrial process control can be a time-consuming task 

leading to big production losses. The overall goal of RCA 

and Decision Support (DS) is to extract from DCS-data 

volumes the necessary information for early assessment of 

abnormalities and provide efficient troubleshooting advice 

in process operation and for maintenance on demand.    

The following issues are treated in the developed 

methodology, which is applied on a prototype system. The 

disturbance analysis system should provide reliable 

handling of uncertainties in acquisition of knowledge and 

data, including both discrete and continuous signals. The 

signal classification should be adaptive to changes in 

process operation mode and account for both normal and 

abnormal/faulty operation conditions. Prediction of the 
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level-trend development should ensure early risk assessment 

and warning on abnormality in order to be able to propose 

early treatment using efficient sequences of actions. 

Therefore, for predictive maintenance on demand, the cost 

estimations should also anticipate the potential production 

losses. 

The system performance should adapt to natural process 

changes and support user interaction. An operator steering a 

complex process will prefer a transparent decision support 

system to a black box system. If the system explains the 

underlying mechanism for its suggestions and conclusions, 

the operator can compare these with his experience and take 

the needed corrective actions with confidence. 

 

2.1. Conditions for a process or device 

Conditions are the process states at a particular time. 

Conditions are used to determine whether a plant-wide 

disturbance analysis should run or not. Process condition is 

a condition that depends on the state of a production 

process. The state is affected by external factors.  An 

abnormal condition is a condition caused by disturbances 

that prevent the process parameters to stay within control 

limits that define the range of normal process operation. It 

causes degradation of targeted process performance, 

resulting in the inability to deliver a pre-specified state of 

output. A critical condition is a condition that causes failure 

to meet targets, unexpected process destructive effects or 

dangerous consequences. It requires urgent corrective 

actions. 

 

2.2. Relation of Condition Monitoring, RCA and DS 

RCA (root cause analysis) is a structured procedure, which 

guides the failure analyst from the disturbance or failure 

event to its cause(s). In our methodology, RCA refers to the 

procedure of searching for the source of a problem, while 

automatically collecting findings on its effects and 

reasoning on the base of the causality mechanism that has 

enabled a failure or undesired events. Moreover, root cause 

analysis is expected to interact with condition monitoring 

and early risk assessment of abnormality or process 

disturbances.  

In standard process control the deviation of a single 

parameter outside its normal range will trigger an alarm. To 

prevent a large number of false alarms, the thresholds of the 

variables should not be too sensitive. But this approach will 

indicate failures only late at an advanced stage. 

Process condition monitoring interacting with RCA will 

use more sensitive thresholds. The large number of 

triggered “alarms” is first analyzed internally by the RCA 

system. Only if the change of some variables in context 

with the behavior of all other process parameters suggests 

the development of a failure, the operator is informed and 

advised on actions. 

3. Preliminaries 

3.1. Bayesian Networks 

A Bayesian network (a.k.a. belief network, Bayesian 

belief network or causal probabilistic network) is a 

probabilistic graphical model for reasoning under 

uncertainty. For industrial processes, the uncertainty can be 

originating from incomplete understanding of the 

complexity of the domain, from stochastic events leading to 

randomness in the process behaviour, from the process 

condition at the time a given control or maintenance actions 

is to be performed, or a combination of these.  

A Bayesian network N=(G,P)  consists of a set of nodes 

(vertices V) representing random variables, a set of links L 

connecting these nodes to form an acyclic, directed graph 

(DAG) G=(V,L), and P - a set of conditional probability 

distributions P(X| pa(X)), see (Jensen, 2001; Jensen et al., 

2002). Here, X denotes a discrete random variable with n 

states nxx ,...,1 ; pa(X) denotes the parents of X in G, i.e. the 

random variables on which X is conditionally dependent. 

The nodes correspond one-to-one with the domain variables 

of the probability distributions such that there is one 

conditional probability distribution (CPD) function P(X| 
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pa(X)) for each node given its parents in the DAG. The 

CPD expresses the strengths of the (causal) dependency 

relations of the child node given its parents.  

An acyclic, directed graph G=(V,L) induces a set of 

(conditional) independence and dependence relations 

between the nodes of V. The set of independence and 

dependence relations of G changes when the states of a 

subset of the nodes of G are known or observed events 

(called evidence). Evidence on a variable provides 

information on its states.  Conditional dependence and 

independence relation between nodes given a (possibly 

empty) set of evidence can be read from the DAG G using 

linear complexity algorithms. 

  

3.1.1. Object-Oriented Probabilistic Graphical 

Models  

An object-oriented probabilistic graphical model 

),( PGN =  is a network (i.e., Bayesian network or 

influence diagram) that, in addition to the usual nodes, 

contains instance nodes. An instance node, e.g. see the node 

“class signal” in Fig. 3, represents an instance of another 

network (called model class, e.g. Fig. 2). The fundamental 

unit of an object-oriented probabilistic graphical model is an 

object. An object represents either a node (i.e. a variable) or 

an instantiation of a network class (called an instance node). 

An instance node is an abstraction of a network fragment 

into a single unit. A network class is a named and self-

contained representation of a network fragment with a set of 

interface and hidden nodes. As the network (e.g. Fig. 3) of 

which instances exist in other networks (e.g. Fig. 4) can 

itself contain instance nodes (Fig. 2), an object-oriented 

network can be viewed as a hierarchical description (or 

model) of a problem domain.  

 

Fig. 2. Simplified BN class for signal classification, based on 

the signal level and its trend 
 

 

Fig. 3. Simplified OOBN for modeling of “Failure in 

subprocess” and containing “class signal” as instance, S1 as 

input interface node and {S2, F_proc1} as output interface 

nodes. 

An instance node connects to other nodes via interface 

nodes. An instance node of a network class hides detailed 

information on the structure of its network class inside the 

encapsulating   network class.  Therefore, the interface 

nodes usually comprise a strict subset of the nodes of the 

instance. Interface nodes are subdivided into input nodes 

and output nodes.  

 

Fig. 4. The network of which the node “Failure in 

subprocess” is an instance 

Input nodes are placeholders for (basic) nodes outside the 

instance (i.e. an input node is a placeholder for a node of the 

encapsulating network class).  

An output node extends the scope of a node of the 

instance node to the encapsulating network class. An output 

node can be specified as parent of nodes in the network 

containing the instance node or can be bound to an input 

node of another instance node of the network.  

In an OOBN, we use the following notations: instance 

nodes are squares with input and output interfaces: input 

nodes are ellipses with shadow dashed line borders and 

output nodes are ellipses with shadow bold line borders, as 

shown in Fig. 3, Fig. 4. 
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In this work, we have used the Hugin software (Andersen 

et al., 1990; Jensen et al., 2002), which supports the 

construction of hierarchical network structures. In the 

Hugin tool, any OOBN has an equivalent “run-time” BN. A 

run-time domain is the domain, where the BN is compiled 

and probability update is performed, based on the 

propagation of the effects of new evidence. 

 
3.2.  Object-oriented Modeling 

 

In general, object-oriented (OO) constructs incorporate 

encapsulation, inheritance and hierarchy. Its common 

purpose is efficient modelling and simulation, providing a 

convenient language for reuse and exchange of models. 

Examples of non-causal object-oriented languages for 

modelling of physical and chemical systems and processes 

include: Modelica, gPROMS, ASCEND, NMF/IDA, 

Omola, etc. As compared to the known simulation 

languages, these object-oriented languages offer several 

advances: 1) non-causal modelling based on differential and 

algebraic equations, describing the physics of the domain, 

provided it is well understood; 2) multi-physics domain 

modelling within the same application model, incorporating 

a combination of electrical, mechanical, thermodynamic, 

hydraulic etc. sub-models; 3) a general type system that 

unifies object-orientation, multiple inheritance, and 

templates within a single class construct, see (Fritzson et al., 

1998).  

 

Thus, the main difference in our OOBN approach 

(exploiting hybrid information obtained from both measured 

and calculated variables from physical models) is in the 

causal probabilistic handling of uncertainties, while the 

above mentioned OO languages are using non-causal 

modelling, based on differential and algebraic equations of 

the problem domain. On the other hand, we use a hybrid 

approach, which is a combination of OOBNs with first level 

statistical diagnostic packages and physical models (e.g. 

pressure-flow nets) serving as agents in the system design 

and providing evidence for automated reasoning on 

abnormality in process operation.  

 The main advantage due to the Bayesian network 

approach is much faster operator guidance, without limiting 

the failure analysis to only one possible root cause. Instead, 

a list of root causes ranked after probabilities will give 

quick and flexible decision support to the operator with 

explanation facility based on causality.  

We have previously developed a number of generic 

OOBNs for signals classification, process performance 

monitoring and diagnosis (Weidl et al., 2002b -2003b). 

Some of these models have been further extended and for 

methodology consistency - described in section 4.3. 

4. Methodology  

The task of failure identification during production 

breakdown, its isolation and elimination is a troubleshooting 

task. On the other hand, the task of detecting early 

abnormality is a task for adaptive operation with predictive 

RCA and maintenance on demand. Therefore, these two 

tasks have different probability-cost function. We combine 

both tasks under the notion of asset management. It aims at 

predicting both process disturbances and unplanned 

production stops, and to minimize production losses. Thus, 

the priority is to determine an efficient sequence of actions, 

which will ensure the minimal production losses and will 

maximize the company profit. To provide a solution to 

troubleshooting, predictive RCA and maintenance on 

demand, we have developed an extended methodology. The 

combined methodology incorporates:  

 

1. Detection of a failure at an early abnormality stage with a 

reduced number of hardware sensors 

2. Identification of the most likely root causes of 

abnormality and of observed or predicted disturbances. 

3. Advice on an efficient sequence of corrective actions and 

observations, under the assumptions of order independent 

costs, which ensures an optimal sequence of actions 
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(Heckerman et al., 1995). Methodology extension to pro-

active solutions with early treatment of abnormality in 

order to avoid potential losses of production is due to 

(Weidl et al., 2003c) and uses the maintenance model of 

(Wang et al., 2003) for the estimated average cost.  

4. Time critical decision support on alternative actions and 

their urgency, as described in (Weidl et al., 2002b). 

 

4.1. An Overview of the Modeling Process 

4.1.1. Monitoring of the Plant Performance  

 

One can undertake a top-down approach, if monitoring and 

analysis of the plant performance are of interest. This 

approach is utilizing an OOBN. The structure of the OOBN 

is reflecting the plant hierarchy and can also be used to 

understand how the modeling process evolves. 

The knowledge-based library of RCA models could be in 

the form of hierarchically structured and interconnected 

failure trees, as shown in Fig. 5. At the top are abnormalities 

in process operation and output quality, which can originate 

from abnormalities in equipment or in process conditions 

possibly due to basic failures.  
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Fig. 5. Failure trees interconnections as a knowledge base 

for RCA of digesting and its process performance analysis 

In the main stream of a pulp and paper mil, the wood 

chips are digested to become pulp. The washing is removing 

the impurities and is preparing the pulp for bleaching. The 

paper formation is flattening the paper into the desired 

thickness and fiber orientation, which ensures certain paper 

properties such as stiffness, etc.  

Examples of performance parameters are: availability of 

machines; speed in factory; production rate; quality of 

output; cost efficiency. 

This approach has been applied in a case study of RCA 

and performance monitoring for a cutting process in hot 

rolling mils. As a natural modeling language of the 

interconnections of failure trees has been applied an OOBN 

(Weidl et al., 2003b).  

An application of condition monitoring and RCA for 

digesting process operation will be given in section 5.  

 

 

4.1.2. Causal Domain Modeling using Bayesian 

Networks 

 

An example of hypotheses, symptoms, and faults can 

demonstrate the scenario for causal modeling of 

malfunctioning in a screen (i.e. pulp filter) operation. 

Assume, a process operator is observing changes in process 

variables: increased pressure (∆p↑) and reduction of 

accepted flow (Faccept ↓) after the filtering equipment. This 

malfunctioning could be either due to clogging of the filter 

(screen plate) or due to decreased flush flow. Filter clogging 

could occur due to either decreased number of the round per 

minutes (rpm) of the rotor or due to increased concentration 

of the filtered flow. The low revolution of the rotor could be 

caused by a malfunctioning motor or due to skidded strap. 

Other root causes of the observed changes in process 

variables could be simply due to malfunctioning valves on 

the accept side or reject side of the screen. If we follow the 

causal mechanism behind the development of the observed 

fault (screen malfunctioning), one can express this scenario 

with its hypotheses on possible root causes of the problem 

as a graphical model as shown in Fig. 6, where the last step 

is deduction on the fault, based on the observations.  
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Screen Malfunction

Clogged screen plateFlush flow ↓

motor (fault) 

Rotor not able to pull

(rotor lower rpm)
concentration ↑

strap (fault/skid.) 

Faccept ↓∆p↑
accept valve

reject valve

Screen Malfunction

Clogged screen plateFlush flow ↓

motor (fault) 

Rotor not able to pull

(rotor lower rpm)
concentration ↑

strap (fault/skid.) 

Faccept ↓∆p↑
accept valve

reject valve

 

Fig. 6. Example on the causal mechanism behind the 

development of an observed fault (screen malfunctioning) 

 

The generic mechanism of disturbance (or failure) build 

up includes a root cause activation, which causes abnormal 

changes in the process conditions. The latter represents 

effects or symptoms of abnormality. Abnormal changes in 

process conditions are registered by sensors and soft 

sensors. If not identified and corrected, these abnormal 

conditions can enable events causing an observed failure. A 

causal representation of the above factors gives the 

following chain of events and transitions, which is of 

interest for RCA under uncertainty and for the purpose of 

decision support on corrective actions, as shown in the left 

part of Fig. 7.  
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Fig. 7. The conceptual layers of the BN for RCA (column 1) 

and the corresponding variables in each layer of the BN 

 

The BN model for Root Cause Analysis reflects the 

causal chain of dependency relations as shown in right part 

of Fig. 7. The dependency relations are between three 

symbolic (conceptual) layers of random variables in the 

problem domain: 

 

(1)  {Hi} , {Sj } , {F}, where i = 1... n,  j = 1 … m  

 

In eq. (1), the set of root causes {Hi} contains all possible 

hypotheses on failure sources or conditions, which can 

enable different events Sj, which precede a failure F or its 

confirming events Sck.  The set of variables {Sj} contain also 

early abnormality effects and symptoms, which are 

observed, measured by sensors, or computed by simple 

statistical or physical models (e.g. mass and energy 

balances). The word “symptoms” refer to changes in the 

process operation conditions, which are affecting the 

equipment performance or the final output. 

The BN model (right part of Fig. 7) is assuming single 

cause, i.e. everything was properly functioning before the 

first symptoms were observed. This is modeled by adding a 

constraint node as a child of all possible root causes {Hi}. 

Moreover, in the BN models, we assume explicitly that all 

variables are discrete. 

The developed methodology is presented in section 4 as a 

mixture of two concepts. Subsection 4.2 provides a 

description of the system to be modeled and how to handle 

uncertainties, whereas subsection 4.3 outlines the modeling 

process in detail and subsection describes the basic 

algorithm for RCA and DS, including also the cost issues. 

 

4.2. Handling of Uncertainties 

The necessary data to determine the condition of a process 

and its devices is provided by DCS-signals, alarms, event 

lists, equipment data, maintenance reports, and a number of 

first level diagnostic packages (Fig. 8). Thus, the knowledge 

acquisition for the CPDs of the BN models is a mixture of 

different acquisition strategies for different fragments of the 

network, as discussed in (Olesen et al., 1992).  

4.2.1. Agents for Handling of Uncertainties 

First level asset diagnostic packages serve as agents in the 

RCA-system architecture. These include diagnostics of 
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small asset units, e.g. sensors, actuators, control loops, soft 

sensors, see Fig. 8.  

They provide information on the degree of reliability of 

sensors readings (by data reconciliation), sensor status (by 

sensor diagnosis), calculated signal-trends (by trend 

diagnosis), actuators and other process assets conditions. 

Thus, it reduces the degree of uncertainty in the acquired 

evidence. The term asset is used here as a collective notion 

to include actuators (valves, pumps), other process assets 

(e.g. digester screens; pipes, can be represented as fake 

valves) and in general, even equipment failures as a root 

cause of signal deviations. More details on the system 

architecture are given in (Weidl, 2002). 

In Fig. 8, the Dynamic Data Reconciliation Agent is 

utilizing simulations from a Pressure-Flow Network, which 

we describe in the following sub-section.  
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Fig. 8.  System architecture for RCA 

 

4.2.2. Agents for handling of uncertainties in 

fluid dynamics modeling 

The idea is to use the simulations provided by a fluid 

dynamic model (e.g. pressure-flow net) as soft sensors’ 

evidence from thereof computed (non-measurable) process 

variables. A pressure-flow model can provide for example 

estimates on some parent configurations in the BN, if there 

is no database to extract such dependency relations. There 

are several sources of uncertainties in this physical model 

estimation, since modeling inputs for the actual valve 

openings might be different than the ones indicated by DCS 

measurements. Moreover, the state of the screening plate 

(normal, clogged, hole or cracks) will still represent 

uncertainty of the outcome of such estimations. This is 

because clusters of small particles or long fibers in the pulp 

flow can clog part of the plate screening area, which is not 

directly considered in the flow dynamics model. One can 

also model this effect in the fluid dynamics simulations by a 

function expressing the gradual reduction of a plate 

screening area. 
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A pressure-flow model (see Fig. 9) can be used to specify 

a mathematical expression of the relation between a node 

(flow_accept or flow_reject) and its parents. Two types of 

equations can be used to build the pressure-flow equation 

system of the screening process: 

• Mass conservation equations for all flow splitting-

points 

(2)    Σ In_flow = Σ Out_flow 
 

this for the screen becomes 
 

flow_inject +  flush_flow = flow_accept + flow_reject 
 

• Pressure drop equations at all pressure changing 

components of the network. Three types of pressure 

changing components ∆(Pressure_at_component) are 

considered: pumps, valves and screening plate 
 

Pressure_after=Pressure_before+∆(Pressure_at_component) 
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Fig. 9. Pressure-flow network of pulp screening process 

with screens in different process sections and series connection 

of screens 

 

The pressure change due to a pump is given as: 
 

(3)   ∆p_pump = dp0 – [ (dp0 – dpn) · q
2 /qn

2  ] 
 

where  dp0 , dpn , qn are the dimensioning parameters of the 

pump, i.e. dp0 - the  pressure at flow q=0 through the pump;  

dpn the  pressure at normal flow q= qn = [N kg/h]. 

The pressure change due to a valve is given as: 
 

(4)    ∆p_valve = ρ · q2  /( a2 v2) 

where q is the flow, ρ  is the density of pulp, a is the 

admittance factor and v is the valve opening in % units. Due 

to non-measurable process disturbances, the parameters ρ, a 

and v incorporate uncertainties in the expressions for 

∆p_accept_valve, ∆p_reject_valve and ∆p_screen_plate. 

Usually, the pulp flow concentration (density) 

measurements are unreliable. The building and dynamics of 

fibers and clusters in the pulp flow are not modeled by 

physical models, or even if modeled - not calculated on-line 

since they are computation time expensive to determine. 

The active screening area in relation to the clogged plate 

surface is difficult to estimate. The flow of accepted pulp 

consistency can be reduced due to many other factors, 

besides screen plate clogging. Uncertainty in measurements 

is one of the motivations for adaptation.  

Uncertainty in computed pressure-flow balance is 

another argument for adaptation. The pressure-flow 

equation system build from (2), (3), (4) can be expressed as: 

f(x) = 0, where the vector x ={q, p} is its solution with 

components q ={ q1, q2, …, qn} for the flow and  p={ p1, p2, …, 

pm } for the pressure. 

We use the Newton’s iteration method to find the 

solution x={p, q} of the pressure-flow equation system, as 

follows: 
 

(5)   xk = xk-1 –J –1 ( x k-1) f(xk-1),    k = 1, 2, 3, … 
 

where the Jacobian of the system is given by  
 

J( x) = {∂fi(x)/∂ xi}. 
 

At k = 1, xk-1 = x0 is the initial guess of the iteration 

procedure. Since the Newton’s iteration method represents 

tangential search, the closer the initial guess is to the real 

solution, the higher the chance to find the correct pressure-

flow net configuration is and thus to keep the system control 

in balance. 

The above provides good motivation for using 

adaptation. Adaptation will be discussed in section 7. The 

Newton iteration provides a good mathematical model for 

estimates on x = {q, p}. The pressure-flow balance should 
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hold at each time step and is computed in quasi-stationary 

regime (by use of the general purpose software Maple), 

since there is a possibility to change at each time step the 

initial flow entering the system by taking into account 

process input changes. The adaptation will then compensate 

the classification of those states of the system, which the 

models do not fully capture, since the domain changes over 

time. 

Physical simulations models (like fluid dynamics, or 

integrated fluid dynamic models with built-in control 

strategies) are more rigorous, although computational time 

consuming and sometimes unsuitable for on-line use. In this 

respect, we have with advantage used the knowledge of 

process physics for causal probabilistic modeling, which 

allows (time efficient) on-line exploitation. In cases, where 

the underlying physics of the problem domain is not well 

understood, one possible alternative is to use simplifying 

assumptions in BN as described in (Weidl, 2002).  

 

4.2.3. More sensitive internal thresholds of 

abnormality 

 

A conventional Distributed Control System (DCS) 

provides alarms at extreme process conditions. For the 

purpose of RCA more sensitive signal thresholds and 

internal RCA system alarms are needed, especially if the 

process deviations and faults are to be found and corrected 

at an early stage of fault development. 

When only one signal in a problem domain exhibits a 

tendency of abnormality, it is usually due to sensor fault. 

This incorporates that, besides RCA, we also consider 

monitoring of the system. Another argument for monitoring 

is: even though no sensor is in DCS-alarm state, the system 

may be malfunctioning, e.g. the sensor, which should raise 

the alarm, could be broken. On the other hand, the DCS 

alarm thresholds (e.g. Fig. 10) serve for detection of really 

critical process conditions and not for early detection of 

abnormality, which RCA is aiming for. These reasons 

strongly motivate the combination of monitoring and RCA. 

If the alarm thresholds in the DCS system were set as low as 

needed to detect early deviations and perform RCA, the 

operator would be exposed to alarm signals overflow, since 

there is no alarm filtering in a standard DCS. 

 

Fig. 10. RCA Alarm Threshold and Mean for Pressure 

 

Signal classification into Discrete States 
 

For industrial processes, the effect of a root cause is often 

recognized in abnormal variations of system parameters. 

Many of these process deviations are quantified by both 

DCS-signals (sensor readings, computed variables) and 

trends. The signals and their trends are conditionally 

dependent on the root causes Hi, as incorporated in the 

model structure in Fig. 7. Fig. 5 and Fig. 7 show how the 

modeling process evolves. Since not the absolute value, but 

the level-trend pattern of the signal is considered to be a 

valuable information/evidence, it is sufficient to classify the 

input signals into discrete mutually exclusive intervals or 

states.  

In this section we consider the classification of a 

continuous signal into level and trends with a minimal 

number of classes (states of a discrete variable), while in the 

next section we consider more refined classification, based 

on mixture models.  
 

Suppose a DCS-signal Sk has Gaussian distribution 

during normal process operation. Its mean value can be 

equal to the (DCS) controller set-point or averaged over a 
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certain time period to remove measurement noise. For the 

purpose of reasoning under uncertainties and to be able to 

distinguish the risk of abnormality from an alarm situation, 

the signal level Sk and the signal trend ∂Sk/∂t are discretized 

into a number of predefined states. 

For the signal levels, the sum of probability on level 

states: low (l), normal (n), high (h), is expressed according 

to the definition of mutually exclusive and exhaustive states 

as: 

(6)         P(X=l|A, B)+P(X=n|A, B)+P(X=h|A, B) =1 

  

where A and B are events causing changes in the signal. 

The high and low states are defined as the ones outside 

the scaled standard deviation (i.e. xabnormal⋅σ  from the mean) 

during normal process operation. 

The signal trends are classified into decreased (d), steady 

(s), increased (i) states, i.e.  

 

P(X=d|A,B)+P(X=s|A,B)+ P(X=i|A,B) =1  

 

For many process signals under normal process 

behaviour, one can employ the Gaussian distribution  

 

(7)        S = µ ± x abnormal⋅σ    

 

where µ is the mean and σ is the standard deviation. We 

define as xH
abnormal = (θHigh - µ) /σ where sH =θ High is the 

signal's high threshold obtained from data analysis. The low 

threshold is defined as sL =θLow ,  xL
abnormal = (µ -θLow)/σ. 

From data analysis, we have found that, the (xabnormal ⋅ σ) 

variation of signals covering the different operation modes 

is in the interval 1σ-5σ. For more analysis and examples, 

see (Weidl, 2002). The most informative signals for RCA 

are the signals of predictive (e.g. pressure) and confirming 

(e.g. lignin content) character with respect to a certain 

failure event (e.g. digester screen clogging).  

The (xabnormal ⋅ σ) variation provides robustness in the 

signal classification and reduces the number of false alarms 

Actually, according to the generic BN model for RCA, even 

if a false alarm is passing through this classification as 

abnormal, it would require a certain combination (Fig. 7) of 

several signals' alarms (internal for RCA) in order to trigger 

an operator alarm or warning, pointing at one or several root 

causes. 

A prior probability distribution for measured process 

parameters can be obtained from their normal and abnormal 

frequencies in the time series of signal sampling points, e.g. 

 

(8)         

 1 high)P(Xlow)P(Xnormal)P(X
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where ntot  is the total number of signal sampling points, nlow  

and nhigh denote the number of low and high signal values 

respectively. 
 

4.2.4. Continuous Distributions on Soft Range of States 
 

The system is receiving as evidence both discrete and 

continuous signals. The DCS provides an event list on 

critical process variables, which contains only Boolean 

variables. The variation range of a continuous signal (DCS-

measured or thereof computed signal (e.g. from a physical 

model)) is discretized into a number of soft numeric 

intervals, represented as states of a BN-variable. We use 

discretization and not continuous variables explicitly, since 

we want to capture both the continuous variation of the 

signal during normal process operation, as well as its non-

continuous disturbances (or discrete faulty deviations 

outside normal variations). This is realized by use of 

mixture models, e.g. (McLachlan et al., 1988), (Holst, 

1997).  

Let S be a continuous variable. Assume that S can be 

partitioned into sets s1 … sn such that the discretized 

probability density function P(S) can be approximated by a 

finite sum over its n soft interval states s i  

 

(9)   P(S) = Σi=1..n P(s i) P(S|si) 
 

i.e. P(S) is partitioned into n sub-CPD P(S|si), each with 

probability P(s i) as a “root cause” of S, as shown in  Fig. 11. 
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The sub-distribution of each soft interval state is chosen as a 

localized function with one peak and it is decreasing 

monotonically with the distance from the peak. Gaussian 

mixtures are used most commonly, since they allow 

approximating any other probability distribution. The use of 

mixture models for soft interval coding of a signal range 

reminds of the fuzzy sets representation (Zadeh, 1965)  as 

membership functions. The difference is in their 

interpretation as CPD in the terminology of Bayesian 

networks. 
 

 

Fig. 11. “Soft interval coding” = Discretization of 

continuous signals into soft range of states within the same 

process operation mode  

 

We also use the Gaussian distribution as the CPD on 

selected soft interval states to represent the most 

characteristic values of a continuous signal during normal 

and faulty operation, see also Fig. 15. The Gaussian peak is 

then localized at the signal set-point or at the mean of 

variables affected from the set-point change, as applied in 

(12) and (14).  

The assumption of soft interval coding is reasonable, if it 

preserves the initial information contained in the signal, i.e. 

when the discretization intervals are selected proportional to 

the std for each set point (or mean) of a signal, so that 

outside of soft interval the CPD should decrease sufficiently 

fast to become negligible. Thus, this assumption provides 

natural signal classification into characteristic states over a 

signal range. As pointed out in (Holst, 1997) if the mixture 

is not used as natural categorization, but only as 

approximation of the real CPD, the intervals should be 

selected “close enough” in order not to distort the 

classification too much. 

In addition, for cases with low frequency of abnormal 

events, we have used a mixture of Poisson distribution to 

represent the signal deviations during faulty operation of the 

process and Gaussian distribution, on soft interval states, 

during normal process behavior, see eq. (15). 

The use of mixture models in a BN allows also 

predicting a continuous value of a process variable, given 

some evidence on other variables, as discussed in 

subsection 4.3.2. 

 

4.3 Generic OOBN Models 

 

The use of OOBN models facilitates the construction of 

large and complex domains, and allows simple modification 

of BN fragments. We use OOBN to model industrial 

systems and processes, which often are composed of 

collections of identical or almost identical components. 

Models of systems often contain repetitive pattern structures 

(e.g. models of sensors, actuators, process assets). Such 

patterns are network fragments. In particular, we use 

OOBNs to model (DCS and computed) signal uncertainties 

and signal level-trend classifications as small standardized 

model classes (a.k.a. fragments) within the problem domain 

model, see sections 4.3.1 - 4.3.3. 

We also use OOBNs for top-down/bottom-up RCA of 

industrial systems in order to ease both the construction and 

the usage of models. This allows different levels of 

modeling abstraction in the plant and process hierarchy, see 

sections 4.3.4 - 4.1.1. A repeated change of hierarchy is 

needed partly due to the fact that process engineers, 

operators and maintenance crew discuss systems in terms of 

process hierarchies and partly due to mental overload with 

details of a complex system in simultaneous causal analysis 

of disturbances. It also proves to be useful for explanation 

and visualization of analysis conclusions, as well as to gain 

confidence in the suggested sequence of actions. 

4.3.1. Adaptive signal classification 

Dependent on operation mode and set-points of 

parameters, the signal's level and trend have different 
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normal and abnormal states. Normal operation mode is 

characterized by a number of set-points cp and their typical 

signal variations during normal and abnormal process 

operation.  

The process is usually operated at several normal 

operation modes dependent on production rate, process 

load, etc. During normal operation modes, the variations of 

process variables are inside their boarders allowed from 

process control. Faulty change of operation mode, faulty 

process operation, as well as equipment faults can be the 

root causes of abnormal process deviations. This can cause 

degradation of process output (e.g. quality) or failure in 

process assets, when exploited under improper conditions. 

The BN model of Fig. 12 provides information on the 

degree of reliability of sensor readings and reduces the 

degree of sensor uncertainties. The variable sensor_reading 

sr represents the continuously measured value (signal) of a 

process variable. The variable sensor_status ss represents 

the condition of the sensor instrument used to perform the 

measurement of a process variable (i.e. true for working 

properly and false for malfunctioning sensor). The variable 

real_value Rt represents the actual development of the 

process variable at time t. The time aspect plays an 

important role, while forecasting the development of the 

signal and the expected process behavior, as will be shown 

in subsection 4.3.2. The variable sensor_diagnosis sd 

represents the input from the sensor diagnostics agent. 
 

 

Fig. 12 General BN fragment of sensor readings 

uncertainties as part of any BN model for RCA. 

It is obvious that if the measurement instrument is not 

properly functioning, then the real-value and the 

sensor_reading need not be the same. Therefore, the sensor 

reading from any DCS-measurement is conditionally 

dependent on random changes in two variables: real value 

under measurement and sensor status of the instrument. Its 

probability distribution is expressed as a mixture (10) of 

normal and uniform distributions for the real value when the 

sensor status is true and false, respectively. 
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where the uniform distribution is defined on the entire 

interval (ymin,ymax) of signal variation, For more details and 

examples, see (Weidl, 2002). 

The sensor diagnostics conclusions are affected by the 

sensor status (true/false), while the real value can be 

restored by use of information from the dynamic data 

reconciliation agent (Fig. 8).  

From data analysis, we have found that certain failure 

events are enabled during process transition between 

consequent operation modes (e.g. mode change for increase 

of production rate). For such cases, it might be preferable to 

use signal classification, which is adaptive to change in 

normal process operation. 

 

Fig. 13 Generic BN model for Signal Classification into 

levels and trends. Adaptive to change of Operation Mode 

An extension of the BN model in Fig. 12 will provide 

classification of the signal, which takes into account 

changes in the process operation mode, see Fig. 13 

representing the BN model structure. The signal level sl is 

directly influenced by random changes in two variables: real 

value Rt and set point cp of the process variable. The states 

of the signal level sl  are given in its probability distribution 
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by the following qualitative decision rule, which is also 

used to compute the corresponding probabilities:  
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where according to (7) v± = ±σ /µ  is specific for each 

operation mode and it is expressing the percentual variation 

around the mean. 

Suppose a DCS-signal S is discretized over soft interval 

states as given in (9), subsection 4.2.4. The prior probability 

of the real value Rt is given then by (12). 

For variables, which are directly manipulated in process 

control loops, the set point serves as mean µ in the Gaussian 

distribution with the respective scaled variance x±⋅σ around 

the set-point of the operation mode. The variance is scaled 

by a factor x± in order to avoid too many “internal alarms” 

for RCA.  

(12) P(Rt| cp)  ˜   Normal (cp, x±⋅σ) 

 

For all other process variables, (12) is modified to 

incorporate (7) as follows  

 

P(Rt| cp)  ˜   Normal (µ, xabn⋅σ) 

 

For variables without set-point, but which covariate with 

controlled variables, we calculate the mean of the relation 

(real value/set point) or alternatively any physical or 

statistical function expressing their correlation.  

For the example of Fig. 10, the flow F is a control loop 

variable with set point cp(F),  the pressure p is covariating 

parameter with real value Rt(p) and one can use their 

physical pressure-flow relation p/F2 to specify the CPD:  

 

P(Rt(p) |cp(F))  ˜   Normal (µ(p/F2), 3σ(p/F2)) 

 

The signal class sc is conditionally dependent on random 

changes in two variables: signal_level sl and signal_trend 

trends. The states of its probability distribution are then 

defined to adapt the classification to changing operation 

mode and are given as 

(13)
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The generic BN model for adaptive signal classification 

into levels and trends (Fig. 13) is one of the generic building 

blocks in any RCA model of monitored industrial process 

with its equipment and asset components in every process 

section.  

Such generic building blocks (as Fig. 13) are typical 

examples of repetitive patterns in the BN model 

development. It is natural to represent them as OOBNs. A 

specification of the interface nodes of Fig. 13 is shown in 

Fig. 14. 

As (Weidl et al., 2002b) have proposed, the BN model of 

Fig. 13 can be extended further to incorporate also the 

information output from loop diagnostics (Fig. 8), process 

section diagnostics and controller mode diagnostics, as 

shown in Fig. 14. 

In cases of faulty operation or root causes originating 

from abnormal condition of process assets, the real value of 

a process variable is dependent on the set-points of different 

operation modes and on the status of the asset, denoted as  

“problem_Asset” As.  
 

 

Fig. 14. A generic OOBN model for Signal Classification 

into levels and trends, within a control loop. The classification 

is adaptive to both normal and faulty changes in process 

operation mode.  
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Then, the conditional probability distribution (CPD) of 

the real value becomes a mixture of Gaussian and Uniform 

distributions around the set point during normal (no asset 

problems) and the mean during abnormal process operation 
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where 5As  denotes “no problem_Asset”.   

Here, the reasoning is similar as for (12). The 

dependence on the status of the asset is expressed with a 

Gaussian distribution, where µabn is the real alarm threshold 

and xabn⋅σabn is the scaled variance which lower variation 

limit provides more sensitive alarm threshold for early risk 

assessment of abnormality.  

Alternatively, for signals deviation, which is 

characterized by low frequency of failure events (e.g. Fig. 

10), we use a mixture consisting of a Gaussian distribution 

on normal operation behaviour and a Poisson distribution 

during faulty operation. Thus, the probability of the real 

value can be modified from (14) as a random variable on 

discretized soft intervals 
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The CPD of the signal trend takes also into account 

problems with process assets and considers also the 

possibility of a novel situation expressed by “other root 

cause” (e.g. valve open by mistake). 
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In this case, a high and increased pressure signal is one 

of the symptoms of screen clogging.  

In Fig. 14, signal_trend has two parents: problem_Asset 

and status_trend. This allows to use evidence on the trend 

and its status and to conclude on the state of the asset (e.g. 

actuator). 

For robustness, the evidence on the trend is calculated as 

the derivative on the averaged time history of the signal 

sampled with a time step ∆t = ti – ti-1: 
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where the mean  
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is averaged between the time points ti-N  and  ti  (i=0 current 

time) over the real value Rt (ti) of a signal at time point ti. 

This provides a simple filter of the noise in the signal 

behavior. To model the degree of uncertainty in the signal 

trend, we use a diagnosis trend agent. In this case, we use 

the uncertainty (historically calculated) for each of the N 

historical points and base on this the diagnosis of the 

derivative variable.  

We consider in equ.(17) a floating time window with N = 

20 historical values, sampling rate 30 sec and unit time 

interval of 1 minute for probability update, which is 

sufficient for processes of slow dynamics.  

To summarize, Fig. 15 shows an example of prior 

probability distribution of a typical process variable in the 

BN model 

 

Fig. 15. BN with DAG structure and CPD for adaptive 

signal classification 
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4.3.2. Temporal BN for Predictions & Risk Assessment 

For predictions and risk assessment of events in the 

process operation, we use dynamic Bayesian networks 

(a.k.a. temporal BN or time sliced models). In particular, we 

use a special kind of strictly repetitive time stamped models, 

like in Fig. 16, called hidden Markov1 models of first order. 

The term hidden refers to a hidden activity in the process, 

e.g. the non-measurable disturbances in the industrial 

system.  

Actually, there exist adaptive control techniques using 

extended Kalman filter to estimate both the process state 

and the unknown parameters of process parts subject to 

wear, e.g. (Sohlberg, 1998). In general, Kalman filter is a 

hidden Markov model, where exactly one variable has 

relatives outside the time slice. 

The underlying assumptions of hidden Markov models 

are: 1) the property of Markov chain process: the future is 

independent of the past given the present. 2) we assume the 

process to be stationary (distributions are fixed over time). 

The last assumption is probably invalid, if the CPDs change 

over time. 

The model in Fig. 14 is a general model for adaptive 

signal classification and can be extended to several time 

steps back and forward from present time in order to predict 

the development of process variables with time, as shown in 

Fig. 16.  

One can also use the model in Fig. 16 to calculate the 

needed set-point in the next time-step, provided the real 

value of the signal should be changed to reach higher 

production rate or in cases, when it shows tendency of 

deviations due to non-measurable disturbances. 

                                                           
1 Definition [Markov process] 
A discrete or continuous random process x(t) is defined as (simple) 

Markov process, if for any finite set of points t1>t2 … >tn-1 >tn 
P(Xn,tn|X1,t1; …; Xn-1,tn-1) = p(Xn,tn| Xn-1,tn-1). 
If x(tn-1)= Xn-1 is given, then evidence on x(tn-2), x(tn-3), … does not add 

any new information on the CPD of  x(tn). The Markov random series is 
often called Markov chain. Any pure random process is a Markov process. 
Many physical processes can be described as Markov processes. This is a 
reasonable assumption for treatment of process variables, since the process 
conditions can be subject to non-measurable process disturbances of 
random character. 
 

The time slices are connected through temporal links to 

construct the full BN model with one-step-ahead prediction. 

This is strictly repetitive temporal model, since the structure 

of the time slices is identical, the temporal links are the 

same and the CPDs in each time slice are identical. 

Therefore the model construction can be facilitated for large 

and complex industrial domains by use of Object Oriented 

Bayesian Networks  (Weidl et al., 2002b, 2003b).  

The temporal (dynamic) Bayesian network models are 

used to predict the development of the signals and evaluate 

their risk of abnormal deviation due to disturbances. This 

signals’ prediction is used as evidence in the RCA model. 

Therefore, the RCA can provide early warnings on root 

cause activation. In that case, the control system can 

examine with short disturbance (e.g. opening or closing of 

valve) whether the suggested root cause is the real one and 

if confirmed (by the operator or directly by a DCS-signal, 

see Fig. 34) the needed corrective action is undertaken at an 

early stage of failure development. 

The signal trend at any time step is directly influenced by 

random changes in the real_value at both previous t0  and 

present t1 time steps within the same operation mode. This 

is not the case at change of operation mode. Therefore, in 

order to keep the general character of the BN model, we 

assume causal independency between the trends in different 

time slices. And we calculate with an expression evaluator 

(Fig. 24) the trend of a process variable at each time step. 

The predicted real_value of any DCS-variable at time 

step t2 is directly influenced by random changes in two 

variables: the set-point of the DCS-operation mode and 

eventual problems with assets. To ensure model generality 

also at operation mode changes, it is reasonable to assume 

causal independence between the real_values in the 

consequent time slices. At operation mode changes, the 

assets problems are mainly due to malfunctioning actuators 

resulting in wrong process variables or wrong set-points for 

the new operation mode.  

The probability distribution of the predicted real_value is 

given as mixture of Normal and Poisson distributions 
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where ( x±⋅σ) is different for the different set points.  

Here one can see the advantage of using mixture models. 

They are helpful for calculating the probabilities of the 

signal states, their classification or of other discrete 

variables, like asset or process conditions. Evidence on the 

sensor reading and sensor status at the present time step 

allow retrieving the continuous real value of the signal from 

the probabilities of the different soft intervals states in the 

signal range. This on its turn allow to retrieve the 

continuous real value of the signal in the next time step, 

given evidence on the real value and trend of the signal at 

the present time step and its desired target set point for the 

next time step.  

The signal predictions can be part of the problem domain 

model or performed outside in a separate module, which can 

share signal information with other problem domains. The 

predicted (expected) signal value can be used as input in the 

RCA to provide predictive diagnostics, which can be very 

useful for predictive maintenance and control before any 

actual failure has occurred. 

The evidence for the BN models of Fig. 14 and Fig. 16 are 

automatically gathered by the RCA system and include 

DCS information on: Switch of process operation mode; 

new ensemble of set-points for controlled process variables; 

sensor readings; sensor status (from the simple statistical 

model on sensor diagnostics). 

 

Fig. 16. Prediction of classified DCS-signals, based on present and past values of process variable 

 

Remark: The switch of process operation mode can be 

handled in the same BN model for RCA only for continuous 

industrial processes, like pulp & paper production. For 

batch processes (e.g. metals, pharmaceuticals or petro-

chemicals), the switch of operation mode would require also 

switch between the appropriate BN models representing the 

corresponding batch mode of operation. 

 

4.3.3. Early Warning Based on Risk Assessment: 

A Case Story on Pulp Screening 

 

The pulp is obtained as a result of cooking of wood-chips in 

a digester. The screening of pulp is a filtering process. In 

order to predict the condition of the screening process and 

to demonstrate the concept, we have selected a 

characteristic set of process random variables: S1 = dP is 

the differential pressure signal; S2 = Faccept, S3 = Freject are 

the flows on accept and reject side, S4 = I (current) is the 
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consumed power by the equipment during screening process 

operation, see Fig. 17. As noted for the signal classification 

model, the different production rates during normal 

screening operation are represented each by one specific 

combination of process variables. All deviations from 

operation mode-set combinations are symptoms of expected 

abnormality in the process or its equipment.  

Instead of reactive troubleshooting, a long-term strategy 

requires a proactive system with early warnings and 

corrective (control or maintenance) actions, which prevent 

an abnormality to develop into a failure. For this purpose, 

we combine in the BN model (Fig. 18) the predicted signal 

class outputs as intermediate variables for risk assessment.  
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Fig. 17. Pulp screen – a pulp filtering equipment 

 

Note, that in the OOBN model at Fig. 18, nodes S1-S4 are 

instance nodes representing network class shown in Fig. 16. 

This OOBN structure follows the generic mechanism of 

occurrence of disturbances or a failure built-up (Fig. 7). 

This is based on certain combination of predicted events 

(e.g. signals S1-S4 in our screening application). The 

pressure-flow combinations of S1, S2, and S3 are 

responsible for a number of mutually exclusive states of the 

event node enable Event, while S4 can be the cause of 

Event2, which dependents on stochastic circumstances that 

might occur simultaneously, but not always independently 

of Event1. When an abnormality event is enabled, a 

corrective action from the operator/maintenance or DCS can 

prevent (or allow) an undesired event (failure), leading to 

abnormal or critical condition of the equipment or a sub-

process (Fig. 18). 

By analogy, we build the OOBN models at higher plant 

hierarchy levels (e.g. process diagnosis, control and 

performance management levels). 

 

 
 

Fig. 18. Assessment of Abnormality Risk and 

Equipment/Sub-process Condition 

 

4.3.4. OOBN for repetitive patterns 
 

We also use the model of Fig. 14 as OOBN for RCA of 

control loops, where the associated asset is the loop 

actuator. It models control loops of general interest to 

process industry, e.g. pressure, flow, tank level and 

temperature control. The model output “class_signal” shows 

whether the control loop is providing the target value for a 

process variable or its “set_points” are wrong for the 

operation mode, alternatively its assets (sensors, actuators) 

are malfunctioning. The corresponding CPDs of this OOBN 

model have been given in section 4.3.1. 

A malfunctioning actuator (i.e. valve or pump) is a root 

cause from the set of basic assets. The OOBN for basic 

process assets can be obtained from the model in Fig. 14 by 

a simple extension incorporating root causes due to related 
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equipment (e.g. screen status) and other basic components 

(e.g. pumps and tanks). Adding all possible root causes, 

including “normal status” as extra states in the node 

“problem_Asset” and renaming it as “status_Asset” 

incorporates this. The findings on the status of sensors, 

actuators and the operation mode settings are provided by 

other diagnostic agents, see Fig. 8. On the other hand, this 

model allows under present evidence to reason on the 

performance of a selected diagnostic agent by pointing that 

agent as a root cause that needs treatment. 

 

4.3.5. OOBN for RCA of Process Operation 
 

A case study on digester process operation (details in 

section 6) has been the source of typical repetitive structures 

incorporated in the following OOBN models. The general 

applicability of this methodology has been proven by its 

easy migration to a case study of pump operation problems 

in evaporation process. 

The OOBNs for risk assessment of process abnormality 

is given in Fig. 19. It will indicate improper operation 

conditions, recognized in changed level-trend pattern. A 

combination of several such OOBN models allow us to 

perform RCA of abnormalities observed in process 

conditions. Here, like in Fig. 13, we use as RCA-variables: 

the signal trend dpi/dt and typical physical relations of the 

process variables, e.g. pressure/flow relations (pi/F
2), 

obtained from simple physical models or following (5). 

In Fig. 19, there can be findings on all nodes in the 

network, except for the mediating modeling nodes 

(statusP1F, statusP2F). The modeling nodes are used to 

simplify the construction of the network.  

The effects nodes are used as feedback in the learning 

algorithm to confirm a possible root cause of abnormality. 

The learning algorithm will be discussed in section 4.4.1 

and depicted in Fig. 22 and Fig. 34. 

Note that Fig. 19b) is an extension of Fig. 19a) with a 

single node (diagnos_F) in order to cover for inheritance in 

OOBN. (Inheritance is currently not supported in Hugin). 

This simplifies the construction of an OOBN, see Fig. 20.  

a)  

 

b)  

 

c)  

Fig. 19. OOBN models: a) - b) for risk assessment of 

abnormal process conditions, which can enable undesired 

events; c) for assessment of abnormality in effects from events.  

 

Fig. 20 - Fig. 21 show how we use the above OOBN 

submodels as building blocks in order to represent the entire 

problem domain at different levels of RCA abstraction. The 
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OOBN models incorporate the consequent causality steps of 

the basic mechanism of a failure build up, as shown in Fig. 

7. Fig. 20 shows an OOBN model of an event (e.g. pump 

plug), which is enabled by abnormal process conditions 

(e.g. high flow concentration) and is confirmed by another 

event (e.g. low pump capacity).  
 

 

Fig. 20. OOBN model representing a configuration of 

different abnormality conditions in process operation, which 

can enable undesired events in basic assets, equipment or 

process operation. The effects of such events confirm or reject 

inference conclusions and serve as learning feedback. 

Fig. 21 shows an OOBN modeling several events (e.g. 

various pump problems), which can cause process faults or 

failures (e.g. if a pump fails and it is indispensable for 

process operation, the plant should be shut down). 

The model of Fig. 21 and its fragments represent the 

hierarchy of process operation. 
 

 

Fig. 21. OOBN model representing a configuration of 

different undesired events, which can cause a process fault, 

failure or undesired deviation in process output. 

4.4. Decision Support on Process Operation  

 

Additional functionality of the described system is 

planned to include decision support on process operation, 

which is taking into account technical root cause and their 

expected effects on the plant operation and economy. For 

this purpose, we utilize a probability-cost function in the 

decision support algorithm, where the cost is calculated 

according to the model for expected average cost. 

 

4.4.1. Basic algorithm steps of the methodology 
 

For any abnormal case, once identified, the system is 

searching to find the root cause of observed or predicted 

problem. The basic algorithm of RCA as implemented in 

this application, is a special modification of the decision-

theoretic troubleshooting (DTTS) algorithm (Heckerman et 

al., 1995), which is further extended by (Weidl et al., 

2003c) to early warning of abnormality to prevent the 

highest potential losses of production.  

The algorithm presented in Fig. 22 incorporates the 

following steps: 

- Continuous on-line acquisition of evidence: DCS-

signals, trends and effects computed by physical 

models 

- Classification of evidence into states  

- Continuous assessment of the risk of abnormality 

- Instantiate the risk (abnormality) assessment node, 

DCS-measurements, thereof computed physical 

variables and observation nodes 

- Automated propagation of evidence by the inference 

engine and probability update  

- Computation of the probability-cost function f(pi ,Ci) 

for all possible root causes of the problem  

- Presentation to process engineers, operators or 

maintenance crew to provide guidance and decision 

support on control or maintenance activities 

- Choose the expected most efficient action based on the 

optimal probability-cost function 
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- Probability adaptation: Update of inference conclusions 

based on observation after performing action.  

- Collection of DCS- and operator feedback on the real 

root cause (and case acquisition with evidence) 

- Sequential Learning: Association of data cases with 

new indicated situations and update of OOBN. 

This procedure continues in loop until the problem is 

solved.  

For early warning on abnormality and preventive 

corrective actions, the cost functions (given in 4.4.2) are 

extended with the related production losses. 
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Fig. 22.  The basic algorithm for Adaptive Root Cause 

Analysis with risk assessment 

 

4.4.2. Expected Average Cost  

Let Xn be the process state immediately after 

performing an inspection and possible adjustment of the 

process at time Tn. The inspection-adjustment time Tn is 

defined as Tn = n · j · ∆t, where j ·∆t is the maintenance 

inspections interval and n is the number of inspections 

during each production run. The expected average cost C(I, 

j, w) is assumed to be a function of the process transition 

step I, the frequency of inspections j and the repair level w, 

which reduces the virtual age of the process. It is obtained 

as the sum of expected average costs of inventory holding h, 

setup K, inspections E(IC), repairs E(RC), preventive 

maintenance E(PC), and defective output E(Cd) during a 

production cycle of a discrete batch process (or a 

continuous one at ∆t → 0+, i.e. inspection can be performed 

at any time) as follows: 
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where P is a deterministic, constant production rate 

(units/time); D is a deterministic, constant demand rate; 

E(T) is the mean length of time of a production cycle and 

the actual length of a production cycle is T´ = P E(T)/D. 

The expression in eqn. (19) was derived and solved 

numerically by (Wang et al., 2003) in order to minimize the 

maintenance cost. For derivation they have used a Markov 

chain in the production-inspection-maintenance model, 

under the following assumptions: (1) the “in-control” 

periods are generally distributed and process deteriorations 

are random; (2) the preventive inspection intervals are equal 

with uncertainties due to 2 types of errors: false alarms and 

missed alarms; (3) the defective items cost includes the 

reworked cost both before and after sale; (4) the general 

repair policy and general cost structure are incorporated. 

Thus, the assumptions of the traditional EMQ (economic 

manufacturing quality) model are relaxed to confirm closely 

to real-world situations.  

We have added into the cost (19) - the production 

losses due to unplanned process stops E(PL) and we call it 

in total expected average cost of asset management. We 

have relaxed the EMQ assumptions further by lifting the 

assumption of negligible time for repair and introducing it 

as one of the random variables, while reasoning on the 

urgency of actions for time critical decision support on 

competing actions for the same root cause. This allows 

maintenance on demand at an early stage of a process 

failure development.  

Following the DTTS algorithm, we utilize a probability-

cost function, where the expected cost of repair is extended 
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into the expected average cost of asset management, i.e. 

eqn. (19)+{E(PL) / T´}. 

 

4.4.3. Advice Sequence 

For an optimal (efficient) sequence of corrective 

actions involving several possible root causes, the RCA 

probabilities should be combined with the associated cost. 

Then, the recommended decision sequence will incorporate 

actions, which are sorted in decreasing order of efficiency. 

This is expressed by the probability-cost estimation 

(Heckerman et al., 1995):  

Pi /Ci  ≥  Pi+1 /C i+1. 

Here iP is the probability that component i is faulty and 

iC is the repair cost associated with component i  and the 

ratio Pi /Ci  is the efficiency of a corrective action Ai .  The 

ordered efficiency represents the optimal sequence of 

process management actions, when the failure is a fact. This 

sequence is optimal under certain conditions including the 

single cause assumption and order independent costs. Note 

that not all conditions for optimal behavior are met during 

process operation. The assumptions of single cause and the 

independency of order of corrective actions may be violated 

in some cases. This is though not a limitation of the 

approach since multiple root causes can be treated one at a 

time. 

For predicted events, it would be more appropriate to 

order the recommended sequence of corrective actions after 

decreasing risk of potential process breakdowns: 

Pi Ci  ≥  Pi+1 Ci+1. 

The last relation is expressing the sequence of preventive 

actions, reducing the potential production losses according 

to the performed risk assessment on active root causes. In 

this case: the cost includes also the expected cost of 

“production stop to fix component i if it breaks” as well as 

the cost of expected production loses, as discussed in 

section 4.4.2. This preventive troubleshooting stops, when 

the estimated risk of abnormality is below a pre-set 

threshold value. The risk is assessed by models of the type 

given in Fig. 18.  

This preventive approach is not theoretically proven 

yet. It reflects the industrial FMEA (failure mode and effect 

analysis) praxis, defining the risk of a failure as the product 

of the probability of failure and its cost. 

In addition, for time critical Decision Support on 

competitive actions for the same root cause, one can use 

with advantage Influence diagram (ID), as shown in (Weidl 

et al., 2002b).  

4.4.4.         Explanation  

Based on the causal character of the OOBN models, the 

operator can feed his own educated observations into the 

inference system, which then evaluates alternative actions 

with respect to their technical and economical impact.     

A user explanation interface should include a ranked list 

of most probable root causes (see Fig. 23), a list of evidence 

(symptoms) for inference, as well as conclusions on 

possible effects.  

Operator Feedback:
True / False
True / False
True / False

Sensor Status
(from Diagnosis Agent)
True / False
True / False
True / False
True / False
True / False
True / False

RCA Update on Effects:
True / False

Most Probable Root Causes:
Rotor drive malfunction: 0.55
Slipping rotor shaft: 0.35
Too high concentration: 0.1

Explanation Symptoms 
(Measurable):
Pressure Difference: High
Power consumption: Normal
Concentration in accept: Normal
Concentration in reject: High
Accept flow: Low
Reject flow: Normal

Failure Effects:
Screen plate clogged

Operator Feedback:
True / False
True / False
True / False

Sensor Status
(from Diagnosis Agent)
True / False
True / False
True / False
True / False
True / False
True / False

RCA Update on Effects:
True / False

Most Probable Root Causes:
Rotor drive malfunction: 0.55
Slipping rotor shaft: 0.35
Too high concentration: 0.1

Explanation Symptoms 
(Measurable):
Pressure Difference: High
Power consumption: Normal
Concentration in accept: Normal
Concentration in reject: High
Accept flow: Low
Reject flow: Normal

Failure Effects:
Screen plate clogged

 

Fig. 23. GUI-functionality for presentation of RCA-results 

and collection of user feedback 

Moreover, one can examine the dependency on evidence 

through the sensor status and update the RCA conclusions. 

The independence relations induced by evidence on a set of 

nodes in DAG are determined using the d-separation 

criterion (Pearl, 1988). In case there is more than one path 

between the root cause and the failure, the entropy is 

calculated for each of the connecting paths and compared 

before the propagation of evidence and after it. Then, the 

path with the largest reduction in entropy is presented to the 
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operator in order to explain the conclusions. For large BNs, 

additional properties, as coloring of the most probable 

scenario of causes and effects allow visualization of the 

explanations.  

 

5. Application of the methodology and System 

integration in the industrial IT 

environment 

The application development has been closely related with 

its integration on the Industrial IT platform and has required 

the development of special modeling conventions, such as 

conventions on BN-nodes’ names, as well as conventional 

node classes for measured, computed, observed, diagnosed 

or status variables. All BN models have been developed in 

the Hugin Graphical User Interface. The Hugin Decision 

Engine has been integrated as a Bayesian inference engine 

in the industrial IT environment (Weidl, 2004). 

In addition, history handler (for the filtered computation 

of signal trends) and state handler (for classification of raw 

data into states of evidence) have been developed as small 

software packages and linked with the BN-models through 

the Hugin API. The history and state handler have also been 

essential for the tests of the BN-models on historical data 

and to simulate and evaluate the performance of the RCA 

system in an Industrial IT environment. 

Thus, the infrastructure for applying this methodology in 

different domains is ready for immediate use, i.e. any new 

application of Bayesian networks is automatically integrated 

on the ABB Industrial IT platform. The modules of the 

RCA system integration architecture are given in Fig. 24.  

Here, the OPC (Object linking and Embedding for 

Process Communication) is a standardized interface 

technology layer on the communication of process control 

data in the automation platform. OPC is intended as 

worldwide industry-standard for communicating real-time 

production information across all levels of the 

manufacturing enterprise. 

 
Operator 

OPC layer 

HMI 

sensor values Probabilities  and  categorical values 

Adaptor 

HUGIN 

Classifier 

Alarms Alarm generator 
Expression 
Evaluator 

 

Fig. 24. The Integration Architecture of the RCA System 

Hugin™ is the BN-software, which effectively calculates 

the probabilities from classified measurement signals and 

human input that are associated with the different root 

causes of certain abnormal event (e.g. hang-up). The 

Adaptor is the link between Hugin and the Automation 

platform. Its main purpose is to feed information from the 

OPC-layer into Hugin and to communicate the resulting 

probabilities back to the OPC-layer. It also publishes a 

function that when activated executes the inference in 

Hugin  (updating the probability calculations).  

Most measurements are real continuous data. Often the 

RCA reasoning does not require this level of detail. Hence 

the continuous signals are classified into discrete states. The 

Classifier reads OPC real continuous data and writes OPC 

discrete data. Hugin reads these discrete data (in the BN 

models). The classification level (e.g. low, high) of the 

signals is customizable, i.e. they can be changed by the user, 

see Fig. 25. The extension of system functionality will 

include an automated classification of the signal limits as 

described for the BN in Fig. 14. 

The Expressions Evaluator reads OPC values and 

calculates new OPC values through mathematical and 

logical expressions. 

Alarm generator: This component reads probabilities, 

which originate from Hugin as OPC values and generates an 

abnormal event (e.g. process fault) alarm, if high probability 
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is encountered. These events are also stored in the historical 

database. 
 

 

Fig. 25. Source: ABB RCA. GUI for configuration of the 

measurement instruments (sensors) and its status 

 

 

Fig. 26. Source: ABB RCA. HMI for presentation of the 

most probable root causes, acquisition of user feedback and 

following update of most probable root causes 

The Human Machine Interface (HMI) presents the 

current probabilities for the different possible root causes to 

the operator or maintainer. The human may enter his 

knowledge of the current situation. The operator may give a 

feedback to the system on whether a certain root cause is 

present or not. HMI writes human input to the OPC-layer, it 

executes the command “recalculate” through the adaptor. 

The HMI also sorts the root causes ranked in decreasing 

probabilities. 

A RCA System incorporated in the ABB Automation 

platform was verified to work at a real plant. An artificial 

problem was there modeled using measurements from a 

chosen problem domain during this verification. The 

methodology was integrated for data analysis as off-line 

functionality; and for data preprocessing, classification and 

RCA as functionalities on-line. 

6. Evaluation of Application 

For the proof of concept and to demonstrate the 

capabilities of the framework of Bayesian networks, a 

number of pulp and paper applications examples have been 

developed. Next, to demonstrate a real world application the 

monitoring and root cause analysis of the digester operating 

conditions in a pulp plant has been chosen, see Fig. 27. This 

application has been used for testing the system 

performance in a simulated scenario with historical data 

from a real pulp plant. 
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Fig. 27. Digester Fiber-line. Case-study: Monitoring of the 

digester operating conditions 

The structure of one of the developed Bayesian networks 

is shown in Fig. 28. The repetitive structures of this network 

have been used as a source of typical patterns (model 

classes) for the development of OOBNs, as described in 

section 4.3.4. The BN model depicted in Fig. 28 has given 

rise to the development of an object oriented representations 

as shown in Fig. 19 - Fig. 21.  
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An OOBN version of Fig. 28 is shown in Fig. 29 for 

comparison of reduced structure complexity; some other of 

its model classes are given in Fig. 30 - Fig. 33.  

 

Fig. 28. An example of a Bayesian Network for root cause analysis of digester process operation. 

 

Fig. 29. An OOBN version of the RCA for digester hang-up. 
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The evaluation summary (Fig. 33) of possible hypotheses 

of a hang-up failure in the digesting process represents the 

„process condition". This model requires as input OOBN-

instance nodes (Fig. 31), which on their term are constructed 

from OOBN (Fig. 32), representing an abnormality enabling 

event (in the case of clogging in the extraction screens). The 

OOBN in Fig. 32 combines OOBN from Fig. 19a,b,c), Fig. 20 

with the pressure covariation (Fig. 30) in different digester 

sections. The calculations for this pressure covariation are 

performed with principal component analysis. 

Combination of the several OOBN of abnormality 

enabling type (Fig. 32) with certain process operation 

condition (or lack of control actions) can result in different 

failures during process operation (causing a digester hang-

up) with certain probability. The corresponding model is 

shown in Fig. 31. 

 

Fig. 30. OOBN for pressure covariation 

 

Fig. 31. OOBN for evaluation of hypotheses on process 

operation failures 

 

Fig. 32. OOBN for abnormality enabling events 
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While all possible hypotheses of failure/abnormality are 

evaluated simultaneously, the output is summarized in a 

logical node “Alarm_Warn” (for possible digester hang-up) 

and presented to the operator, see Fig. 33. 

 

Fig. 33. OOBN for summary of hypotheses evaluation 

 6.1. Bayesian networks validation 

Domain experts have validated the dependency and 

independence relations of the BN models while the 

performance of the models has been validated using 

historical and simulated data. Domain experts based on 

guidance from the knowledge engineers performed the 

validation of the qualitative part of the models.  

For of purpose of validation, historical data analysis has 

been performed to set the allowed normal variations for 

measured signals, to examine expert opinions and adjust the 

Bayesian network structure. Design tests have been used to 

determine whether the BN is modeling correctly the expert 

and causal relations obtained from data analysis and to 

provide consequent revision of consistency in knowledge, 

expertise, experience and real plant data.  

The BN models have been first tested qualitatively. This 

included testing the outcome of various root cause scenarios 

while providing evidence on the corresponding symptoms 

(measurements or observations) and vice versa. The main 

purpose of the qualitative testing has been to ensure the 

RCA-inference reproduces the intended outcome exactly as 

incorporated in the designed BN structure with combination 

of the corresponding states of the related variables. Table 1 

shows a representative example for testing the scenarios 

indicative of abnormality or fault (denoted as A with states 

true T and false F) in the problem domain. In the cases: the 

symptom variables are expressed as products of root causes 

(RCi = Hi), i.e. Si = ? i Hi, and take one of the possible 

states, e.g. low (L), normal (N) or high (H), Si={L,N,H}.  
 

Variable States: 

Low?/ Normal? / High? 

States: 

True/False 

S1 L/N/H  

: :  

Sn L/N/H  

A  T 

RC1  T/F 

:  : 

RCn  T/F 

 

Table 1.  Qualitative testing of BN. General representation 

of the combinations reflected by the various scenario in RCA. 
  

In the case study, the frequency of about 75 events of 

digester screen's clogging during 97 days of operation 

(approximately 14x104 minutes or sampling cases) was 

recorded in the real process historical data. The 

corresponding pressure signal (Fig. 10) has been classified 

into states with CPTs as follows P(X=low|A,B)=10-10; 

P(X=normal|A,B) = 0.9995; P(X=high| A, B) = 0.0005 

This expresses the fact that process variables are 

behaving as expected for normal mode of operation in 

99.95% of all sampled cases, and exhibit 0.05% of 

screening abnormalities distributed in high (0.05%) and low 

(0%, we use instead 10-10) states of the signal values. It is 

not advisable to set a probability to zero, as in the case of 

“X=low”, which will cause a system “crash” (due to 

inconsistent evidence), if evidence on low signal state is 

encountered, e.g. due to a valve problem (valve open by 

mistake). Therefore, it is recommended to use small value 

instead of zero. 

We could predict clogging (in the upper screen in the 

lower cooking circulation) in the mean 10-20 minutes 

before the time point when the differential pressure reached 

its critical value 0.05. The price for this was 10% of false 

alarms. In a few cases was possible to predict clogging of 1 

to 4 hours ahead. We could also find mean effects that may 

influence the risk of clogging and updated the BN structure.  
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A direct prediction of a single clogging event has been 

difficult, since there were not enough historical data to 

validate hang-ups in its generality.  Thus, only use of 

historical data is not satisfactory, especially for verification 

of RCA performance in the case of rare faults, as well as if 

the plant is in its design phase or in its start-up phase and 

the number of abnormality records is scarce or missing.  

For a plant in a design or in a start-up phase, it is of 

advantage to perform statistical tests while exploiting the 

knowledge based BN structure and CPTs. The BN models 

are currently being evaluated based on simulated data. The 

goal of this phase of the model evaluation is to determine 

the success rate of Root Cause Analysis by experiment.  

The experiments performed include both black box 

testing and unit testing. Black box testing is performed on 

the complete model whereas unit testing is performed on 

each individual OOBN class. 

 

Network Variables RCs Observations 

liquor extraction 26 2 6 

Digester hang-ups 297 11 84 

Table 2. Statistics on the models used in the validation 

experiment. 

The model-testing experiment proceeds in a sequence of 

steps.  In first step we sample the data to be used in the 

subsequent steps of the experiment. The data sets to be used 

in the experiments are sampled from the models to be 

evaluated. Each data set will contain observations on the 

measurable variables of the model with some values 

missing at random to reflect real process operation (the 

amount of missing data is varied in order to test robustness 

with respect to missing observations).  The second step of 

the testing phase is to process each of the sampled cases and 

determine the output from the model on the case. The third 

and last step is to determine the performance of the model 

based on the generated statistics.  

We consider two different scenarios. The first scenario 

considers situations where no faults have occurred whereas 

the second scenario considers situations where a single fault 

has occurred. For each possible fault we randomly 

(according to the probabilities of the model) 

generate N cases. Each case will contain an instantiation of 

the observed variables only. This produces a database 

},...,{ 1 nNccD =  of Nn * cases with a single fault where 

n is the number of root causes in the model. The database 

D  can be used to estimate the success rate of RCA. We 

determine the frequency of correctly diagnosed cased in D . 

Similarly, we generate a database of cases with no faults. 

The above experiment is used to generate statistics on 

error detection and correct RCA of all possible faults. We 

describe the experimental results obtain on two different 

models. We consider the model for preventive root cause 

analysis on clogging in the extraction screens of the pulp 

digester and the model for root cause analysis on digester 

hang-ups. Some statistics on the two models are shown in 

Table 2. The BN model for RCA of screens’ clogging in the 

liquor extraction consists of 26 variables with 2 root cause 

variables and 6 observation variables (e.g. sensor readings) 

while the digester hang-up model consists of 297 variables 

with 11 root cause variables and 84 observation variables. 

We use a multiple step stratified sampling approach to 

generate the database of cases used in the experiment. We 

sample one strata where the root cause variables are forced 

to any non faulty state and one strata for each single fault 

configuration of the root cause variables. The none-fault 

configuration is enforced using likelihood evidence on the 

root cause variables. The likelihood evidence rules out all 

faulty states and thereby enforce the root cause variable to 

take on a value corresponding to a non-faulty state. 

Similarly, for each single fault case we force all non-fault 

root cause to a non-faulty state using likelihood evidence. 

This scheme ensures that probability of each non-faulty 

state is reflected in the evidence. On the other hand, we 

obtain an equal number of cases for each single fault 

combination of the root cause variables. For this reason we 

consider the probability of recognizing each single fault 

state separately. 
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Table 3 shows the names of the 2 root cause variables of 

the liquor extraction model while Table 5 shows the names 

of the 11 root cause variables of the digester hang-ups 

model. Table 4 and Table 6 show the validation results for the 

two models, respectively.  

 

Id Variable name 

1 Clogging_Lower_Cooking_Lower_Screen 

2 Clogging_Lower_Cooking_Upper_Screen 

Table 3. Names of root cause variables in the model for 

preventive root cause analysis on clogging in the extraction 

screens of the pulp digester. 

In Table 4 and Table 6 FP is the false positive rate while 

All is the overall performance of the model when 

considering the non-faulty as well as the faulty cases. The 

false positive rate is defined as the frequency by which a 

non-faulty case is identified as a faulty case. 

 

Correctly Identified % 

For different missing data rates 

Id 

0% 0.01% 0.05% 0.1% 

1 0.908 0.902 0.883 0.816 

2 0.991 0.978 0.952 0.928 

FP 0 0.001 0.002 0.004 

All 0.9663 0.9597 0.9443 0.9133 

Table 4. Validation results for the model for preventive root 

cause analysis on clogging in the extraction screens of the pulp 

digester. 

 For each root cause the tables show the frequency (in 

percentage) of correctly identifying the root cause in the 

case. We consider a faulty case correctly identified when 

the probability of the true fault state in the case is higher 

than the probability of all non-faulty states of the faulty root 

cause variable. Similarly, we consider a non-fault case 

correctly identified when the probability of no faulty state is 

above the probability of all non-faulty states for all root 

cause variables. 

 

Id Variable name 

1 High_Steam_To_Chip_Bin_Flow 

2 PreimRetime 

3 StrongerUpstream 

4 cloggMainScrD_hiP_risk 

5 cloggMainScrC_hiP_risk 

6 CloggMainScrB_hiP_risk 

7 CloggMainScrA_hiP_risk 

8 cloggLwrScrB_hiP_risk 

9 cloggUprScrB_hiP_risk 

10 cloggUprScrA_hiP_risk_PCA 

11 cloggLwrScrA_hiP_risk_PCA 

Table 5. Names of root cause variables in the model for root 

cause analysis on digester hang-ups. 

For each strata we generate 1000 cases. In order to 

experiment on the robustness of the performance of the 

models, we consider missing data. For each observation in 

each case we randomly remove the value of the observed 

variables. We consider missing values percentages of 0, 

0.01, 0.05, and 0.1. 
 

Correctly Identified % 

For different missing data rates 

Id 

0% 0.01% 0.05% 0.1% 

1 0.752 0.69 0.695 0.67 

2 0.815 0.793 0.8 0.78 

3 0.846 0.803 0.802 0.773 

4 0.992 0.996 0.991 0.994 

5 0.995 0.99 0.997 0.986 

6 0.843 0.864 0.82 0.789 

7 0.831 0.849 0.833 0.782 

8 0.804 0.8 0.798 0.781 

9 0.954 0.96 0.965 0.952 

10 0.932 0.943 0.936 0.917 

11 0.841 0.839 0.847 0.788 

FP 0.122 0.115 0.11 0.108 

All 0.8736 0.8677 0.8645 0.842 

Table 6 Validation results for model for root cause analysis 

on digester hang-ups. 
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As shown in Table 4 and Table 6 the performance of the 

two models is generally quite high. It is clear from the 

tables that the performance of the model decreases slightly 

with the amount of missing data. 

Further elaboration for better optimization criteria on 

acceptable alarm thresholds could consider the costs of a 

missed alarm and a false alarm, and could involve statistics 

of the dead time between alarm and event enabling. 

In addition, we have also quantitatively tested the 

communication between computation of signals by simple 

physical models, classification of computed and measured 

signals into states or intervals, their propagation into BN 

and inference outcome. 

The above described validation study indicates that the 

system actually works as designed, which has been a crucial 

ingredient in the proof of system concept and performance. 

Thus, this methodology represents an improvement (as 

automation technology) over existing techniques for manual 

root cause analysis of non-measurable process disturbances 

and can be considered as a powerful complement to 

industrial process control.  

 

6.2. Compliance with system requirements 

The used modeling techniques and the results of this 

work allow us to conclude that most listed requirements on 

RCA & DS are met as summarized in Table 7:  

Table 7. System requirements and their realization 

 
System Requirements Provided by 

Fast and flexible inference inference in Bayesian networks. Inference takes < 1 sec. and provides a list 

of root causes ordered in decreasing probabilities for flexible actions, 

proposes a sequence of corrective actions ordered by efficiency 

Handling of uncertainties probabilistic reasoning in BN with missing data and discrete variables’ 

states 

Early detection and diagnosis BN models for early assessment of risk in combination with built-in chain 

causality representing different scenario, Validation with data 

Isolability mixture models in BN for RCA in different operation modes, validation 

(Weidl G., 2002). 

Decision support at higher automation level causal BN structure with explanations and automated symptoms collection 

& inference; 

Higher automation by including automated DCS-feedback for root cause 

confirmation by immediate effects of root causes.   

Explanation of conclusions d-separation in causal BN, incorporating in their structure the underlying 

mechanism of a failure/abnormality build-up; calculation of the path with 

the highest entropy change 

(Weidl, G., Madsen, A.L. and Dahlquist, E. , 2002b) 

Adaptivity to process changes mixture models for CPD to handle change in operation mode and sequential 

learning of the BN-parameters for adaptation to on-line operation 

conditions 

Robustness Modeling tricks, mixture models, validation;  

(Weidl G. , 2002, 2004) 
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System-user interaction operator feedback for “supervised” sequential learning 

allows interaction due to fast BN-inference (<1 sec.) 

Novelty identifiability additional state or node “other root cause” 

Multiple faults identifiability the single cause assumption – allow to treat multiple causes one at a time 

Alternative : constraints for explicit multiple cause modelling 

Reasonable storage and computational 

requirements 

distributed RCA and decision strategy (similar to DCS).  

The inference in static BN with several hundred variables takes <1 second 

Reusable system- and model design for 

various process applications 

object oriented Bayesian networks 

(Weidl, G., Madsen, A.L. and Dahlquist, E. , 2003c). 

 

 

A future improvement could take advantage of a 

preprocessing algorithm (originating e.g. from Information 

theory), that filters all available signals to the amount 

sufficient for RCA. Then, the BN model structure would be 

completed with relations extracted from data in a systematic 

and automated way.  

With the growing size of domain applications, it might 

be preferable to have a simpler classifier (e.g. based on PCA 

or NN) for binary decision on whether fault is present or 

not. Once abnormality is detected, the RCA system will find 

the root cause and explain its underlying mechanism.  

Some requirements related to efficient system 

development still need some improvements e.g. 

methodology for systematic (and automated) system testing. 

The later becomes more and more important as applications 

grow in size. 

7. Future Work 

7.1. Adaptation 

In any real process application, RCA needs adaptation to 

incorporate the ongoing changes in process behavior. A 

suitable adaptation algorithm is the sequential learning with 

fading due to (Spiegelhalter et al., 1990) and (Olesen et al., 

1992). The fading is a convenient feature after maintenance 

activity on the plant. The sequential learning is performed 

on the actual root cause nodes and corresponding evidence 

for that particularly observed case, see Fig. 34. This is based 

on feedback from DCS and on operator/maintenance 

reports, as shown in Fig. 23. 
 

The combination of several OOBN (e.g. Fig. 19 - Fig. 21) 

allows also a confirmation on effects of failure events, 

which are used for sequential adaptive learning from data. 

We perform adaptation with the Hugin tool, see (Olesen et 

al., 1992). In the OOBN, adaptation is performed in the run-

time domain, where any OOBN has an equivalent “run-

time” BN. By using supervised sequential learning in 

OOBN, each  node in the run-time BN is adapted 

independently of its source (i.e. network class node).    This 

behavior is preferable in order to take into account 

individual node conditional probability distributions, but 

placed in different context or position in the industrial 

process.  

We do not use adaptation in the time-sliced models, since 

this will violate the assumption of the process being 

stationary. The sequential adaptation in an OOBN or DBN 

has not been considered in the literature until now and it 

will be a subject of future research and development of the 

system functionality. 
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Fig. 34.  Information flow for RCA and Adaptive Learning. RCA & DS Communication with Operator Station, Maintenance 

and Control Systems 

 

7.2. Discussion. Prediction of Process Dynamics  

For the purpose of risk assessment and early warnings on 

abnormality in the signal development we have constructed 

a past-present-future combination of generic BN-fragments 

as shown in Fig. 16.  

Some corrective actions, if carried out by users, will 

result in changes of operation modes of the process as 

implicated by the model in Fig. 16. This can be reflected in 

the temporal (dynamic) OOBN, where the time-delays in 

process variables are incorporated in dt time slices later, 

where dt corresponds to the typical time delay for the 

corresponding process variable. This will introduce causal 

dependency between the past and the future. Therefore, in 

order to preserve the first order Markov property of the 

temporal model (i.e. in order to maintain the property that 

the future is independent of the past given the present); it 

may be necessary to create a hierarchical temporal model 

where each time-slice contains a temporal model on its own. 

This hierarchical approach will make the top-most temporal 

model obey the first order Markov property and it fits well 

with the object-oriented framework. 

Temporal BNs can also be used to express causality 

dependencies reflecting the dynamic character of the 

process. For example, alarm filtering deals mainly with 

time-delay effects and has been addressed in (Leung et al., 

2000).  

In Fig. 16 we use only three time steps to model an 

infinite step process. In the reality, such a temporal network 

is a static network, since it represents a finite and fixed 

number of time slices and it can reason only with a finite 

series of observations coming from a dynamic process or 

system. For real time applications, it is desired to include in 

the model as many time slices as possible to account for 

time delayed effects. The last can cause an inefficient and 
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time consuming inference, since evidence propagation 

would involve all time slices although probability update is 

desired only for a limited number of time slices.      

A computation scheme, which can handle infinite series 

of observations in dynamic BN has been described in 

(Kjærulff , 1992). It changes dynamically the width of the 

time slice window, as well as the number of backward 

smoothing and forecasting time slices. Thus, it can provide 

flexible and selective inference. It also supports inclusion 

and modification of time-delayed observations. This 

approach will often produce a complete separator 

containing all variables representing the belief state of the 

system. It does not introduce too much complexity as the 

belief state of the system (according to Fig. 16) includes 

only a few variables (status_sensor, status_trend and 

real_value). Forecasting of signal development and time-

delays (based on (Kjærulff , 1992)) will be incorporated in 

the proposed RCA system in the near future.  

Another issue is concerned with suitable approximations 

for handling of large number of temporal relations between 

the different time slices, as discussed in (Boyen et al., 1998 

a,b). This will be a subject of further study. 

8. Conclusions        

Our intention has been to develop a methodology, which is 

generally applicable for root cause analysis and decision 

support in industrial process operation.  

The outlined application has been a subject for feasibility 

study of our methodology in pulp process operation.  

In the validation with simulated data, the performance of 

the models is generally quite high. It is clear from the tables 

that the performance of the model decreases slightly with 

the amount of missing data. 

In the application tests of the digester hang-up prediction, 

we accepted 10% false alarms. This limit was implied by 

tha fact that a tendency of hang-up development is very 

difficult to forecast, but in case it occurs it might have sever 

consequences, if handled at a late stage of a hang-up 

development. Due to economical reasons, the digester 

operators prefer rather a few false alarms, than missed 

alarms. 

The sequence of repair actions can be considered as an 

improvement over existing policies, since it can provide an 

on-line assistance to the operators and thus, it can save 

process operation time. Therefore, we can presume that the 

system can reach the goal of reducing "substantially 

production losses". Based on this results and indications, we 

can conclude that this application does demonstrate real 

improvement in the state of the art. Because of the wide 

applicability of this methodology, we expect the results of 

this paper will be the interest to other system designers who 

are considering similar problems.  

A methodology for systematic (and automated) system 

testing still needs to be developed, in order to ensure 

efficient system development, especially when applications 

grow in size. 

The experience shows, that simple updates of typical 

repetitive structures (e.g. sensors) in a BN may turn into 

annoying and time-consuming task. Instead, we have used 

OOBNs with advantage for RCA & DS in process 

operation, i.e. OOBNs ensure causal modeling of 

interdependency of events, simplifies modification and 

reusability of BN. 

The use of OOBNs has simplified the development of the 

model for adaptive signal classification and prediction of 

the development of signals' level-trend. Moreover, the 

overall RCA-model complexity has been reduced at 

different levels of industrial plant hierarchy. This can be 

used to provide an overview for explanations of RCA-

conclusions at different levels of abstraction (plant 

hierarchy). In addition, these OOBNs are used in a next 

level OOBN for risk assessment of disturbances and 

estimation of their most probable root causes for predictive 

maintenance on demand. 

In case only one large OOBN of the problem domain is 

used, one can expect limitation of the scale of models, due 

to the computational demands of evidential reasoning in 
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temporal OOBN. Therefore, we have used as agents a 

number of OOBNs for prediction of the signal development.  

The object-oriented BN framework fits very naturally 

into any industrial IT environment, which utilizes object-

oriented integration of applications as containers of 

different applications communicating via the aspect 

integration platform in order to allow overall process 

optimization. 

The scalability and modification of an existing system is 

feasible due to the OOBN-approach deployed in our tools. It 

will require the development of new overall BN model only 

for a new process. This overall process model will use 

OOBN for all standard components with default 

probabilities, which can adapt either with historical process 

data or by in-situ cases during operation to the new process 

environment and its typical operation. This scalability is 

feasible as long as the qualitative structure of the process 

remains similar to the previously developed application.   

For practical use we expect that six man months is a 

reasonable estimate on the effort required for an industrial 

group to develop a new application by using the proposed 

framework and tools described in this work. The estimated 

work effort includes the development and verification of a 

BN model for a problem domain described by 200-500 

relevant process variables, provided data and knowledge on 

the problem domain are available or acquirable. 

 

The proposed system design for Root Cause Analysis 

(RCA) & Decision Support (DS) is incorporating agents for 

handling of uncertainties. We have developed one particular 

agent, based on fluid dynamics modeling. This is solving an 

equation system for the pressure-flow network. It provides 

soft sensor (non-measurable) information for evidence in 

the reasoning under uncertainties.  

This allows us to estimate the risk of abnormality at an 

early stage and to propose early treatment by an efficient 

sequence of actions. The last is utilizing cost estimations 

anticipating also potential production losses. This allows 

efficient troubleshooting and predictive maintenance on 

demand (Weidl et al., 2003c).  

This application demonstrates that fast and flexible 

disturbance analysis (RCA and DS) is feasible in industrial 

process control. It need not be a time-consuming task, if a 

computerized troubleshooting system is deployed. Thus, it 

has the potential of reducing substantially the production 

losses due to unplanned process breakdowns.   
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