Chapter 4
Probabilistic Networks

In this chapter we introduce probabilistic networks for belief update and decision
making under uncertainty.

Many real-life situations can be modeled as a domain of entities represented
as random variables in a probabilistic network. A probabilistic network is a clever
graphical representation of dependence and independence relations between random
variables. A domain of random variables can, for instance, form the basis of
a decision support system to help decision makers identify the most beneficial
decision in a given situation.

A probabilistic network represents and processes probabilistic knowledge. The
representational components of a probabilistic network are a qualitative and a
quantitative component. The qualitative component encodes a set of (conditional)
dependence and independence statements among a set of random variables, in-
formational precedence, and preference relations. The statements of (conditional)
dependence and independence, information precedence, and preference relations
are visually encoded using a graphical language. The quantitative component, on
the other hand, specifies the strengths of dependence relations using probability
theory and preference relations using utility theory.

The graphical representation of a probabilistic network describes knowledge of
a problem domain in a precise manner. The graphical representation is intuitive
and easy to comprehend, making it an ideal tool for communication of domain
knowledge between experts, users, and systems. For these reasons, the formalism
of probabilistic networks is becoming an increasingly popular knowledge represen-
tation for belief update and decision making under uncertainty.

Since a probabilistic network consists of two components, it iS customary to
consider its construction as a two-phase process: the construction of the qualitative
component and subsequently the construction of the quantitative component. The
qualitative component defines the structure of the quantitative component. As
the first step, the qualitative structure of the model is constructed using a graphical
language. This step consists of identifying variables and relations between variables.
As the second step, the parameters of the quantitative part as defined by the
qualitative part are assessed.
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70 4 Probabilistic Networks

In this book, we consider the subclass of probabilistic networks known as
Bayesian networks and influence diagrams. Bayesian networks and influence
diagrams are ideal knowledge representations for use in many situations in-
volving belief update and decision making under uncertainty. These models are
often characterized as normative expert systems as they provide model-based
domain descriptions, where the model is reflecting properties of the problem domain
(rather than the domain expert) and probability calculus is used as the calculus for
uncertainty.

A Bayesian network model representation of a problem domain can be used
as the basis for performing inference and analysis about the domain. Decision
options and utilities associated with these options can be incorporated explicitly
into the model, in which case the model becomes an influence diagram, capable of
computing expected utilities of all decision options given the information known at
the time of decision. Bayesian networks and influence diagrams are applicable for a
large range of domain areas with inherent uncertainty.

Section 4.1 considers Bayesian networks as probabilistic models for belief
update. We consider Bayesian network models containing discrete variables only
and models containing a mixture of continuous and discrete variables. Section 4.2
considers influence diagrams as probabilistic networks for decision making under
uncertainty. The influence diagram is a Bayesian network augmented with decision
variables, informational precedence relations, and preference relations. We consider
influence diagram models containing discrete variables only and models contain-
ing a mixture of continuous and discrete variables. In Sect. 4.3 object-oriented
probabilistic networks are considered. An object-oriented probabilistic network is
a flexible framework for building hierarchical knowledge representations using the
notions of classes and instances. In Sect. 4.4 dynamic probabilistic networks are
considered. A dynamic probabilistic network is a method for representing dynamic
systems that are changing over time.

4.1 Belief Update

A probabilistic interaction model between a set of random variables may be
represented as a joint probability distribution. Considering the case where random
variables are discrete, it is obvious that the size of the joint probability distribution
will grow exponentially with the number of variables as the joint distribution must
contain one probability for each configuration of the random variables. Therefore,
we need a more compact representation for reasoning about the state of large and
complex systems involving a large number of variables.

To facilitate an efficient representation of a large and complex domain with many
random variables, the framework of Bayesian networks uses a graphical representa-
tion to encode dependence and independence relations among the random variables.
The dependence and independence relations induce a compact representation of the
joint probability distribution.
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4.1 Belief Update 71
4.1.1 Discrete Bayesian Networks

A (discrete) Bayesian network, N = (X, G, P), over variables, X, consists of a
DAG G = (V, E) and a set of conditional probability distributions P. Each node v
in G corresponds one-to-one with a discrete random variable X, € X with a finite set
of mutually exclusive states. The directed links E € V xV of G specify assumptions
of conditional dependence and independence between random variables according
to the d-separation criterion (see Proposition 2.4 on page 33).

There is a conditional probability distribution, P(X,|Xpaw)) € P, for each
variable X, € X. The set of variables represented by the parents, pa(v), of v € V
in § = (V,E) is sometimes called the conditioning variables of X, — the
conditioned variable.

Definition 4.1 (Jensen 2001). A (discrete) Bayesian network N = (X, G,P)
consists of’

e ADAGSG = (V, E) withnodes V = {vy,...,v,} and directed links E

* A set of discrete random variables, X, represented by the nodes of G

* A set of conditional probability distributions, P, containing one distribution,
P (X, | Xpa@)), for each random variable X, € X

A Bayesian network encodes a joint probability distribution over a set of
random variables, X, of a problem domain. The set of conditional probability
distributions, P, specifies a multiplicative factorization of the joint probability
distribution over X as represented by the chain rule of Bayesian networks (see
Sect. 3.7 on page 62):

P(X) = [ PXo 1 Xpat)- 4.1

veV

Even though the joint probability distribution specified by a Bayesian network
is defined in terms of conditional independence, a Bayesian network is most often
constructed using the notion of cause—effect relations, see Sect. 2.4. In practice,
cause—effect relations between entities of a problem domain can be represented in a
Bayesian network using a graph of nodes representing random variables and links
representing cause—effect relations between the entities. Usually, the construction
of a Bayesian network (or any probabilistic network for that matter) proceeds
according to an iterative procedure where the set of nodes and their states and the
set of links are updated iteratively as the model becomes more and more refined.
In Chaps. 6 and 7, we consider in detail the art of building efficient probabilistic
network representations of a problem domain.

To solve a Bayesian network N = (X, G, P) is to compute all posterior marginals
given a set of evidence ¢, that is, P(X |¢) forall X € X. If the evidence set is empty,
that is, ¢ = @, then the task is to compute all prior marginals, that is, P(X) for
all X € X.

Example 4.1 (Apple Jack (Madsen, Nielsen & Jensen 1998)). Let us consider the
small orchard belonging to Jack Fletcher (also called Apple Jack). One day, Apple
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72 4 Probabilistic Networks

Fig. 4.1 The Apple Jack
network @ @

Jack discovers that his finest apple tree is losing its leaves. Apple Jack wants to
know why this is happening. He knows that if the tree is dry (for instance, caused
by a drought), there is no mystery as it is common for trees to lose their leaves during
a drought. On the other hand, the loss of leaves can be an indication of a disease.

The qualitative knowledge about the cause—effect relations of this situation
can be modeled by the DAG G shown in Fig. 4.1. The graph consists of three
nodes: Sick, Dry, and Loses that represent variables of the same names. Each
variable may be in one of two states: no and yes, that is, dom(Dry) = dom(Loses) =
dom(Sick) = (no,yes). The variable Sick tells us that the apple tree is sick by
being in state yes. Otherwise, it will be in state no. The variables Dry and Loses
tell us whether or not the tree is dry and whether or not the tree is losing its leaves,
respectively.

The graph, G, shown in Fig. 4.1 models the cause—effect relations between
variables Sick and Loses as well as between Dry and Loses. This is represented
by the two (causal) links (Sick, Loses) and (Dry, Loses). In this way, Sick and Dry
are common causes of the effect Loses.

Let us return to the discussion of causality considered previously in Sect. 2.4.
When there is a causal dependence relation going from a variable A to another
variable B, we expect that when A is in a certain state, this has an impact on the
state of B. One should be careful when modeling causal dependence relations in a
Bayesian network. Sometimes it is not quite obvious in which direction a link should
point. In the Apple Jack example, we say that there is a causal impact from Sick
on Loses, because when a tree is sick, this might cause the tree to lose its leaves.
Why can we not say that when the tree loses its leaves, it might be sick and turn the
link in the other direction? The reason is that it is the sickness that causes the tree to
lose its leaves and not the lost leaves that causes the sickness.

Figure 4.1 shows the graphical representation of the Bayesian network model.
This is referred to as the qualitative representation. To have a complete Bayesian
network, we need to specify the quantitative representation. Recall that each variable
has two states, no and yes.

The quantitative representation of a Bayesian network is the set of condi-
tional probability distributions, P, defined by the structure of G. Table 4.1 shows
the conditional probability distribution of Loses given Sick and Dry, that is,
P(Loses|Dry, Sick). For variables Sick and Dry, we assume that
P(S) =(0.9,0.1) and P(D) = (0.9,0.1) (we use D as short for Dry, S as short
for Sick, and L as short for Loses).
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4.1 Belief Update 73

Table 4.1 The conditional L
probability D S

s no yes
distribution P(L|D, S)

no no 0.98 0.02
no yes 0.1 0.9

yes no 0.15 0.85
yes yes 0.05 0.95

Note that all distributions specify the probability of a variable being in a specific
state depending on the configuration of its parent variables, but since Sick and Dry
do not have any parent variables, their distributions are marginal distributions.

The model may be used to compute all prior marginals and the posterior
distribution of each nonevidence variable given evidence in the form of observations
on a subset of the variables in the model. The priors for D and S equal the
specified marginal distributions, thatis, P(D) = P(S) = (0.9, 0.1), while the prior
distribution for L is computed through combination of the distributions specified
for the three variables, followed by marginalization, where variables D and S are
marginalized out. This yields P(L) = (0.82,0.18) (see Example 3.10 on page 50
for details on combination and marginalization). Following a similar procedure, the
posteriors of D and S given L = yes can be computed to be P(D|L = yes) =
(0.53,0.47) and P(S|L = yes) = (0.51,0.49). Thus, according to the model, the
tree being sick is the most likely cause of the loss of leaves. O

The specification of a conditional probability distribution P (X,|Xpa)) can be
a labor-intensive knowledge acquisition task as the number of parameters grows
exponentially with the size of dom(Xr,(,)), where fa(v) = pa(v) U {v}. Different
techniques can be used to simplify the knowledge acquisition task, assumptions can
be made, or the parameters can be estimated from data.

The complexity of a Bayesian network is defined in terms of the family fa(v)

with the largest state space size || Xga)| = |dom(Xa())|. As the state space size
of a family of variables grows exponentially with the size of the family, we seek
to reduce the size of the parent sets to a minimum. Another useful measure of the
complexity of a Bayesian network is the number of cycles and the length of cycles
in its graph.

Definition 4.2. A Bayesian network N = (X, G, P) is minimal if and only if for
every variable X, € X and for every parent Y € Xpq(), X, is not independent of ¥
given Xpaw) \ {Y}.

Definition 4.2 says that the parent set X,(,) of X, should be limited to the set of
variables with a direct impact on X,,.

Example 4.2 (Chest Clinic (Lauritzen & Spiegelhalter 1988)). A physician at a
chest clinic wants to diagnose her patients with respect to three diseases based
on observations of symptoms and possible causes of the diseases. The fictitious
qualitative medical knowledge is the following.
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74 4 Probabilistic Networks

Tuberculosis

Tub_or_cancer

Fig. 4.2 A graph specifying the independence and dependence relations of the Asia example

The physician is trying to diagnose a patient who may be suffering from one
or more of tuberculosis, lung cancer, or bronchitis. Shortness of breath (dyspnoea)
may be due to tuberculosis, lung cancer, bronchitis, none of them, or more than one
of them. A recent visit to Asia increases the chances of tuberculosis, while smoking
is known to be a risk factor for both lung cancer and bronchitis. The results of a
single chest X-ray do not discriminate between lung cancer and tuberculosis, as
neither does the presence nor absence of dyspnoea.

From the description of the situation, it is clear that there are three possible
diseases to consider (lung cancer, tuberculosis, and bronchitis). The three diseases
produce three variables Tuberculosis (7°), Cancer (L), and Bronchitis (B) with
states no and yes. These variables are the targets of the reasoning and may, for this
reason, be referred to as hypothesis variables. The diseases may be manifested in two
symptoms (results of the X-ray and shortness of breath). The two symptoms produce
two variables X_ray (X), and Dyspnoea (D) with states no and yes. In addition,
there are two causes or risk factors (smoking and a visit to Asia) to consider. The
two risk factors produce variables Asia (A) and Smoker (.S') with states no and yes.

An acyclic, directed graph, G, encoding the above medical qualitative knowledge
is shown in Fig. 4.2, where the variable Tub_or_cancer (£) is a mediating variable
(modeling trick, see Sect. 6.2.2 on page 152) specifying whether or not the patient
has tuberculosis or lung cancer (or both).

Using the structure of §, we may perform an analysis of dependence and
independence properties between variables in order to ensure that the qualitative
structure encodes the domain knowledge correctly. This analysis would be based on
an application of the d-separation criterion.

Figure 4.2 only presents the qualitative structure G (and the variables) of N =
(X, G,P). In order to have a fully specified Bayesian network, it is necessary to
specify the quantitative part, P, too.

The quantitative domain knowledge is specified in the following set of (condi-
tional) probability distributions P(A4) = (0.99,0.01), P(S) = (0.5,0.5), and the
remaining conditional probability distributions, except P(E|L,T), are shown in
Tables 4.2 and 4.3.
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Table 4.2 The conditional probability distributions P(L|S), P(B|S), P(T|A),
and P(X |E)

P(L|S) S =no S = vyes P(B|S) S =no S = yes
L =no 0.99 0.9 B =no 0.7 0.4
L =yes 0.01 0.1 B =yes 0.3 0.6
P(TA) A =no A = yes P(X|E) E =no E =yes
T =no 0.99 0.95 X =no 0.95 0.02
T =yes 0.01 0.05 X = yes 0.05 0.98
Table 4.3 The conditional B =no B = yes
p.rob.abﬂ?ty E =no E =yes E =no E =yes
distribution P(D|B, E)
D =no 0.9 0.3 0.2 0.1
D=yes 03 0.7 0.8 0.9

Table 4.4 Posterior distributions of the disease variables given various evidence scenarios

3 P(B = yes|e) P(L =yes|e) P(T = yes|¢)
? 0.45 0.055 0.01

{S = yes} 0.6 0.1 0.01

{S = vyes, D = yes} 0.88 0.15 0.015

{S = yes, D = yes, X = yes} 0.71 0.72 0.08

The conditional probability table of the random variable E can be generated
from a mathematical expression. From our domain knowledge of the diagnosis
problem, we know that E represents the disjunction of L and T. That is, E
represents whether or not the patient has tuberculosis or lung cancer. From this,
we can express £ as E = T V L. This produces the conditional probability
P(E =vyes|L =1[,T =1t) = 1 whenever/ or ¢ is yes and 0 otherwise.

We will, in a later section, consider in more detail how to build mathematical ex-
pressions for the generation of conditional probability distributions (see Sect. 6.5.3
on page 180).

Using the Bayesian network model just developed, we may compute the posterior
probability of the three diseases given various subsets of evidence on the causes and
symptoms as shown in Table 4.4. O

4.1.2 Conditional Linear Gaussian Bayesian Networks

Up until now, we have considered Bayesian networks over discrete random variables
only. However, there are many reasons for extending our considerations to include
continuous variables. In this section we will consider Bayesian networks consisting
of both continuous and discrete variables. For reasons to become clear later, we
restrict our attention to the case of conditional linear Gaussian (also known as
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76 4 Probabilistic Networks

normal) distributions and the case of conditional linear Gaussian Bayesian networks.
We refer to a conditional linear Gaussian Bayesian network as a CLG Bayesian
network.

A CLG Bayesian network N = (X, 3G, P,F) consists of an acyclic, directed
graph § = (V, E), a set of conditional probability distributions P, and a set of
density functions J. There will be one conditional probability distribution for each
discrete random variable X of X and one density function for each continuous
random variable Y of X.

A CLG Bayesian network specifies a distribution over a mixture of discrete and
continuous variables (Lauritzen 1992b, Lauritzen & Jensen 2001). The variables, X,
are partitioned into the set of continuous variables, X, and the set of discrete vari-
ables, X 4. Each node of G represents either a discrete random variable with a finite
set of mutually exclusive and exhaustive states or a continuous random variable
with a conditional linear Gaussian distribution conditional on the configuration of
its discrete parent variables. This implies an important constraint on the structure
of G, namely, that a discrete random variable X, may only have discrete parents,
that is, Xpay € X4 forany X, € X4.

Any Gaussian distribution function can be specified by its mean and variance
parameter. As mentioned above, we consider the case where a continuous random
variable can have a single Gaussian distribution function for each configuration of
its discrete parent variables. If a continuous variable has one or more continuous
variables as parents, the mean may depend linearly on the state of the continuous
parent variables. Continuous parent variables of discrete variables are disallowed.

A random variable, X, has a continuous distribution if there exists a nonnegative
function p, defined on the real line, such that for any interval J,

P(XelJ)= J p(x)dx,
J

where the function p is the probability density function of X (DeGroot 1986). The
probability density function of a Gaussian (or normal)- distributed variable, X,
with a mean value, p, and a positive variance, 02, is (i.e., X ~ N(u,0?) or £L(X) =
N(u.0%))

o2y oo L _(x—_wz}
p(x,u,O)—N(M,O)—WeXP[ 02 |’

where x € R.!

A continuous random variable, X, has a conditional linear Gaussian distribution
(or CLG distribution), conditional on the configuration of the parent variables (Z <
Xp,I € Xp)if

L(X|Z =2z1=1i)=N(AG) + B(G)"z C@)), (4.2)

1£(X) should be read as “the law of X’
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Fig. 4.3 CLG Bayesian

network with X discrete @
and X, and X3 continuous

where A is a table of mean values (one value for each configuration i of the discrete
parent variables /), B is a table of regression coefficient vectors (one vector for
each configuration i of I with one regression coefficient for each continuous parent
variable), and C is a table of variances (one for each configuration i of /). Notice
that the mean value A(i) + B(i)"z of X depends linearly on the values of the
continuous parent variables Z, while the variance is independent of Z. We allow
for the situation where the variance is zero such that deterministic relations between
continuous variables can be represented.

The quantitative part of a CLG Bayesian network consists of a conditional
probability distribution for each X € X, and a conditional Gaussian distribution
for each X € Xp. For each X € X with discrete parents, /, and continuous
parents, Z, we need to specify a one-dimensional Gaussian probability distribution
for each configuration i of I as shown in (4.2).

Definition 4.3. A CLG Bayesian network N = (X, G, P, F) consists of:

« ADAGS = (V, E) with nodes V and directed links E

* A set of random variables, X, represented by the nodes of §

* A set of conditional probability distributions, P, containing one distribution,
P (X, | Xpa@)), for each discrete random variable X,

» A set of conditional linear Gaussian probability density functions, F, containing
one density function, p(Y, | Xpa()), for each continuous random variable Y,

The joint distribution over all the variables in a CLG Bayesian network has the
form P(Xs = i) * Njx,|(1(i),5(i)), where Ni (i, 0%) denotes a k-dimensional
Gaussian distribution. The chain rule of CLG Bayesian networks is

P(Xa = i) * Ny (@), 0%@0) = [ PGulina) * [T 2Ol Xpa),

VEVA weVr

for each configuration i of X 4.
Recall from Table 2.2 that in the graphical representation of a CLG Bayesian
network, continuous variables are represented by double ovals.

Example 4.3 (CLG Bayesian Network). Figure 4.3 shows an example of the qual-
itative specification of a CLG Bayesian network, N, with three variables, that is,
X = {X1, X, X3}, where X4 = {X;} and X = {X», X3}. Hence, N consists of
a continuous random variable X3 having one discrete random variable X (binary
with states false and true) and one continuous random variable X, as parents.
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Profession w

Housing

MaritalStatus

WillToPay

Fig. 44 CLG Bayesian network for credit account management

To complete the model, we need to specify the relevant conditional probability
distribution and density functions. The quantitative specification could, for instance,
consist of the following conditional linear Gaussian distribution functions for X3:

L‘;(X3 |false, Xz) = N(—S + (—2 * XZ), 11)
L(X3|true, x3) = N(5 + (2 % x2), 1.2).

The quantitative specification is completed by letting X, have a standard normal
distribution (i.e., X, ~ N(0, 1)) and P(X,) = (0.75,0.25).

The qualitative and quantitative specifications complete the specification of N.
The joint distribution induced by N is

0 1 10
P(X, = false) * p(X2, X3) = 0.75*% N ((_5) ’ (10 5.1)) ’

P(X; = true) * p(X2, X3) =025 % N ((g) ’ (110 512)) '

O

Determining the joint distribution induced by N requires a series of nontrivial

computations. We refer the reader to the next chapter for a brief treatment of

inference in CLG Bayesian networks. A detailed treatment of these computations
is beyond the scope of this book.

Example 4.4 (Adapted from Lauritzen (1992a)). Consider a banker monitoring
her clients in order to limit future loss from each client account. The task of
the banker is to identify clients who may have problems repaying their loans by
predicting potential future loss originating from each individual customer based on
demographic information and credit limit.

Figure 4.4 shows a simple CLG Bayesian network model for this scenario.
Loss is a linear function of variables Income (/) given variable WillToPay ().

Kjeerulff, U. B., & Madsen, A. L. (2012). Bayesian networks and influence diagrams : A guide to construction and analysis. ProQuest

Ebook Central <a onclick=window.open(‘http://ebookcentral.proquest.com’,’_blank’) href="http://ebookcentral.proquest.com’ target="_blank" style="cursor: pointer;

Created from th-ab on 2021-09-02 16:17:04.



Copyright © 2012. Springer New York. All rights reserved.

4.2 Decision Making Under Uncertainty 79

CreditLimit (C) is a linear function of Income given Housing (H ) and Marital Status
(M). In addition MaritalStatus is also a causal factor of Housing and WillToPay,
while Profession and Employment are causal factors of Income.

With the model, the banker may enter observations on each client and compute
an expected loss for that client. The model may be extended to include various
risk indicators and controls in order to facilitate a scenario-based analysis on each
client. O

The reason for restricting our attention to the case of conditional linear Gaussian
distributions is that only for this case is exact probabilistic inference feasible by
local computations. For most other cases, it is necessary to resort to approximate
algorithms.

4.2 Decision Making Under Uncertainty

The framework of influence diagrams (Howard & Matheson 1981) is an effective
modeling framework for representation and analysis of (Bayesian) decision making
under uncertainty. Influence diagrams provide a natural representation for capturing
the semantics of decision making with a minimum of clutter and confusion for the
decision maker (Shachter & Peot 1992). Solving a decision problem amounts to
(1) determining an (optimal) strategy that maximizes the expected utility for the
decision maker and (2) computing the expected utility of adhering to this strategy.

An influence diagram is a type of causal model that differs from a Bayesian
network. A Bayesian network is a probabilistic network for belief update, whereas
an influence diagram is a probabilistic network for reasoning about decision making
under uncertainty. An influence diagram is a graphical representation of a decision
problem involving a sequence of interleaved decisions and observations. Similar to
Bayesian networks, an influence diagram is a compact and intuitive probabilistic
knowledge representation (a probabilistic network). It consists of a graphical rep-
resentation describing dependence relations between entities of a problem domain,
points in time where decisions are to be made, and a precedence ordering specifying
the order on decisions and observations. It also consists of a quantification of the
strengths of the dependence relations and the preferences of the decision maker. As
such, an influence diagram can be considered as a Bayesian network augmented
with decision variables, utility functions specifying the preferences of the decision
maker, and a precedence ordering.

As decision makers we are interested in making the best possible decisions
given our model of the problem domain. Therefore, we associate utilities with state
configurations of the network. These utilities are represented by utility functions
(also known as value functions ). Each utility function associates a utility value with
each configuration of its domain variables. The objective of decision analysis is to
identify the decision options that produce the highest expected utility.

Kjeerulff, U. B., & Madsen, A. L. (2012). Bayesian networks and influence diagrams : A guide to construction and analysis. ProQuest

Ebook Central <a onclick=window.open(‘http://ebookcentral.proquest.com’,’_blank’) href="http://ebookcentral.proquest.com’ target="_blank" style="cursor: pointer;

Created from th-ab on 2021-09-02 16:17:04.



Copyright © 2012. Springer New York. All rights reserved.

80 4 Probabilistic Networks

By making decisions, we influence the probabilities of the configurations of
the network. To identify the decision option with the highest expected utility, we
compute the expected utility of each decision alternative. If A4 is a decision variable
with options ay, ...,a,, H is a hypothesis with states Ahj,...,h,, and ¢ is a set
of observations in the form of evidence, then we can compute the utility of each
outcome of the hypothesis and the expected utility of each action. The utility of an
outcome (a;, h;)is U(a;, h ;) where U(-) is our utility function. The expected utility
of performing action a; is

EU(«;) = ) Ulai,hj) P(hye),
J

where P (-) represents our belief in H given ¢. The utility function U(-) encodes the
preferences of the decision maker on a numerical scale.

We shall choose the alternative with the highest expected utility; this is known
as the (maximum) expected utility principle. Choosing the action, which maximizes
the expected utility, amounts to selecting an option a* such that

a* = argmax EU(a).
a€A

There is an important difference between observations and actions. An observa-
tion of an event is passive in the sense that we assume that an observation does not
affect the state of the world, whereas the decision on an action is active in the sense
that an action enforces a certain event. The event enforced by a decision may or may
not be included in the model depending on whether or not the event is relevant for the
reasoning. If the event enforced by an action A is represented in our model, then A
is referred to as an intervening action, otherwise it is referred to as a nonintervening
action.

4.2.1 Discrete Influence Diagrams

An (discrete) influence diagram N = (X, G, P,U) is a four-tuple consisting of
a set, X, of discrete random variables and discrete decision variables, an acyclic,
directed graph G, a set of conditional probability distributions P, and a set of utility
functions U. The acyclic, directed graph, § = (V, E), contains nodes representing
random variables, decision variables, and utility functions (also known as value or
utility nodes).

Each decision variable, D, represents a specific point in time under the model of
the problem domain where the decision maker has to make a decision. The decision
options or alternatives are the states (dy,...,d,) of D where n = | D||. The use-
fulness of each decision option is measured by the local utility functions associated
with D or one of its descendants in G. Each local utility function u(Xp)) € U,
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where v € Vy is a utility node, represents an additive contribution to the total
utility function u(X) in N. Thus, the total utility function is the sum of all the utility
functions in the influence diagram, that is, u(X) =} ¢y, #(Xpaw))-

Definition 4.4. A (discrete) influence diagram N = (X, G, P, U) consists of:

* ADAG § = (V, E) with nodes, V, and directed links, E, encoding dependence
relations and information precedence including a total order on decisions

* A set of discrete random variables, X, and discrete decision variables, X p, such
that X = X¢ U Xp represented by nodes of G

* A set of conditional probability distributions, P, containing one distribution,
P (X, | Xpa@)), for each discrete random variable X,

* A set of utility functions, U, containing one utility function, u(Xpa()), for each
node v in the subset Vy C V' of utility nodes

An influence diagram supports the representation and solution of sequential
decision problems with multiple local utility functions under the no-forgetting
assumption (Howard & Matheson 1981), that is, perfect recall is assumed of all
observations and decisions made in the past.

An influence diagram, N = (X, G, P, U), should be constructed such that one
can determine exactly which variables are known prior to making each decision.
If the state of a variable X, € X¢ will be known at the time of making a
decision D,, € Xp, this will (probably) have an impact on the choice of alternative
at D. An observation on X, made prior to decision D,, is represented in N by
making v a parent of win §. If visaparentof win § = (V, E) (i.e.,, (v,w) € E,
implying X, € Xpa)), then it is assumed that X, is observed prior to making the
decision represented by D,,. The link (v, w) is then referred to as an informational
link.

In an (perfect recall) influence diagram, there must also be a total order on the
decision variables Xp = {Dy,..., D,} € X. This is referred to as the regularity
constraint. That is, there can be only one sequence in which the decisions are
made. We add informational links to specify a total order (D,..., D,) on Xp =
{D1,..., D,}. There need only be a directed path from one decision variable to the
next one in the decision sequence in order to enforce a total order on the decisions.

In short, a link, (w, v), into a node representing a random variable, X,, denotes
a possible probabilistic dependence relation of X, on Y,,, while a link from a node
representing a variable, X, into a node representing a decision variable, D, denotes
that the state of X is known when decision D is to be made. A link, (w,v), into
a node representing a local utility function, u, denotes functional dependence of u
on X, € X.

The chain rule of influence diagrams is

EU(X) = 1_[ P(Xv‘Xpa(v)) Z M(Xpa(w))'
X, €Xc weVy
An influence diagram is a compact representation of a joint expected utility function.
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Fig. 4.5 The oil wildcatter

network

Table 4.5 The conditional Seismic

probability distribu- oil diffuse open closed

tion P (Seismic|Qil, Test = yes)
dry 0.6 0.3 0.1
wet 0.3 0.4 0.3
soaking 0.1 0.4 0.5

In the graphical representation of an influence diagram, utility functions are
represented by rhombuses (diamond-shaped nodes), whereas decision variables are
represented as rectangles, see Table 2.2.

Example 4.5 (Oil Wildcatter (Raiffa 1968)). Consider the fictitious example of an
oil wildcatter about to decide whether or not to drill for oil at a specific site.

The situation of the oil wildcatter is the following. The oil wildcatter must decide
either to drill or not to drill. He is uncertain whether the hole will be dry, wet,
or soaking with oil. The wildcatter could take seismic soundings that will help
determine the geological structure of the site. The soundings will give a closed
reflection pattern (indication of much oil), an open pattern (indication of some oil),
or a diffuse pattern (almost no hope of oil).

The qualitative domain knowledge extracted from the above description can be
formulated as the DAG shown in Fig. 4.5. The state spaces of the variables are as
follows dom(Drill) = (no, yes), dom(Qil) = (dry, wet, soaking), dom(Seismic) =
(closed, open, diffuse), and dom(Test) = (no, yes).

Figure 4.5 shows how the qualitative knowledge of the example can be compactly
specified in the structure of an influence diagram N = (X, G, P, U).

The quantitative probabilistic knowledge as defined by the structure of G consists
of P(Oil) and P (Seismic|Qil, Test), while the quantitative utility knowledge consists
of U (Test) and U, (Drill, Oil).

The cost of testing is 10k, whereas the cost of drilling is 70k. The utility
of drilling is 0k, 120k, and 270k for a dry, wet, and soaking hole, respectively.
Hence, U;(Test) = (0, —10) and U,(Drill = yes, Oil) = (—70, 50,200). The test
result Seismic depends on the amount of oil represented by variable Oil as specified
in Table 4.5. The prior belief of the oil wildcatter on the amount of oil at the site
is P(Oil) = (0.5,0.3,0.2).
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This produces a completely specified influence diagram representation of the
oil wildcatter decision problem. The decision strategy of the oil wildcatter will be
considered in Example 4.7 on the following page. O

As a consequence of the total order on decisions and the set of informational
links, the set of discrete random variables and decision variables is subjected to a
partial ordering. The random variables are partitioned into disjoint information sets
Jo,....J, (e, J; NJ; = @ fori # j)relative to the decision variables specifying
the precedence order. The information set J; is the set of variables observed after
decision D; and before decision D; ;. The partition induces a partial ordering, <,
on the variables X. The set of variables observed between decisions D; and D,
precedes D;; and succeeds D; in the ordering

Jo<Dy<Jy<---<D, =<7,

where Jj is the set of discrete random variables observed before the first decision, J;
is the set of discrete random variables observed after making decision D; and before
making decision D; i, foralli = 1,...,n —1, and J, is the set of discrete random
variables never observed or observed after the last decision D, has been made.
If the influence diagram is not constructed or used according to this constraint, the
computed expected utilities will (of course) not be correct.

Example 4.6 (Partial Order of Information Set). The total order on decisions and
the informational links of Example 4.5 on the preceding page induce the following
partial order:

{} < Test < {Seismic} < Drill < {Qil}.

This partial order turns out to be a total order. In general, this is not the case.
The total order specifies the flow of information in the decision problem. No
observations are made prior to the decision on whether or not to Test. After testing
and before deciding on whether or not to Drill, the oil wildcatter will make an
observation on Seismic, that is, the test result is available before the Drill decision.
After drilling Oil is observed. O

To solve an influence diagram N = (X, G, P, U) with decision variables, Xp,
is to identify an optimal strategy, A, over Xp maximizing the expected utility for
the decision maker and to compute the (maximum) expected utility EU(A) of A.
A strategy, A, is an ordered set of decision policies A = (dy, ..., d,) including one
decision policy for each decision D € Xp. An optimal strategy A= (31, cees Sn),
maximizes the expected utility over all possible strategies, that is, it satisfies

EU(A) > EU(A),

for all strategies A.
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The decision history of D;, denoted J(D;), is the set of previous decisions and
their parent variables

i—1

i—2
H(Dy) = | JUD;IU Xpaw) = {D1..... Di}U | 95,
j=1 j=0

where v; denotes the node that represents D ;.
The decision past of D, denoted J(D;), is the set of its parent variables and the
decision history H(D;)

I(D;) = Xpa) U H(D;)
i1
= Xpaw;) U U({Dj} U Xpa(vj))
j=1
i1
={Dy.....D:i }u | J9;.

Jj=1

Hence, J(D;) \ H(D;) = J;_ are the variables observed between D; | and D;.
The decision future of D;, denoted F(D;) is the set of its descendant variables

FD)=%U| J dD;}U Xpp))
j=i+1

={Di1..... DU ;.
j=i

A policy §; is a mapping from the information set J(D;) of D; to the state
space dom(D;) of D; such that §; : J(D;) — dom(D;). A policy for decision D
specifies the (optimal) action for the decision maker for all possible observations
made prior to making decision D.

It is only necessary to consider §; as a function from relevant observations
on J(D;) to dom(D;), that is, observations with an unblocked path to a utility
descendant of D;. Relevance of an observation with respect to a decision is defined
in Sect. 4.2.3 on page 93.

Example 4.7 (Oil Wildcatter Strategy). After solving the influence diagram, we
obtain an optimal strategy A= {STest, SD,i"}. Hence, the optimal strategy A (we show
how to identify the optimal strategy for this example in Example 5.11 on page 129)
consists of a policy <§Test for Test and a policy <§D,i” for Drill given Test and Seismic

STest =Yyes
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yes Seismic = closed, Test = no
yes Seismic = open, Test = no
A es Seismic = diffuse, Test = no
SDrm(Seismic, Test) = y

yes Seismic = closed, Test = yes

yes Seismic = open, Test = yes

no Seismic = diffuse, Test = yes

The policy for Test says that we should always test, while the policy for Drill says
that we should drill except when the test produces a diffuse pattern indicating almost
no hope of oil. O

An intervening decision D of an influence diagram is a decision that may impact
the state or value of another variable X represented in the model. In order for D
to potentially impact the value of X, X must be a descendant of D in G. This
can be realized by considering the d-separation criterion (consider the information
blocking properties of the converging connection) and the set of evidence available
when making the decision D. Consider, for instance, the influence diagram shown
in Fig. 4.5. The decision Test is an intervening decision as it impacts the value
of Seismic. It cannot, however, impact the value of Oil as Oil is a non-descendant
of Test, and we have no down-stream evidence when making the decision on Test.
Since decision D may only have a potential impact on its descendants, the
usefulness of D can only be measured by the utility descendants of D.

A total ordering on the decision variables is usually assumed. This assumption
can, however, be relaxed. Nielsen & Jensen (1999) describe when decision problems
with only a partial ordering on the decision variables are well defined. In addition,
the limited memory influence diagram (Lauritzen & Nilsson 2001), see Sect. 4.2.3,
and the unconstrained influence diagram (Vomlelova & Jensen 2002) support the
use of unordered decision variables.

Example 4.8 (Apple Jack). We consider once again the problems of Apple Jack
from Example 4.1 on page 71. A Bayesian network for reasoning about the causes
of the apple tree losing its leaves was shown in Fig. 4.1 on page 72.

We continue the example by assuming that Apple Jack wants to decide whether
or not to invest resources in giving the tree some treatment against a possible
disease. Since this involves a decision through time, we have to extend the Bayesian
network to capture the impact of the treatment on the development of the disease.
We first add three variables similar to those already in the network. The new
variables Sick™, Dry*, and Loses™ correspond to the original variables, except that
they represent the situation at the time of harvest, that is, after the treatment decision.
These variables have been added in Fig. 4.6.

The additional variables have the same states as the original variables: Sick*,
Dry*, and Loses™ all have states no and yes. In the extended model, we expect
a causal influence from the original Sick variable on the Sick* variable and from
the original Dry variable on the Dry* variable. The reason is the following. If, for
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Fig. 4.6 'We model the
system at two different points dry >( dry*
in time (before and after a
decision) by replicating the
structure

Sick >(_ Sick™

Fig. 4.7 Addition of a
decision variable for Ddry >(_ Dry*
treatment to the Bayesian
network in Fig. 4.6

Sick

Y

Sick™

example, we expect the tree to be sick now, then this is also likely to be the case
in the future and especially at the time of harvest. Of course, the strength of the
influence depends on how far out in the future we look. Perhaps one could also have
a causal influence from Loses on Loses™, but we have chosen not to model such a
possible dependence relation in this model.

Apple Jack may try to heal the tree with a treatment to get rid of the possible
disease. If he expects that the loss of leaves is caused by drought, he might save
his money and just wait for rain. The action of giving the tree a treatment is now
added as a decision variable to the Bayesian network, which will then no longer be
a Bayesian network. Instead, it becomes the influence diagram shown in Fig. 4.7.

The treat decision variable has the states no and yes. There is a causal
link (Treat, Sick™) from the decision Treat to Sick™ as we expect the treatment to
have a causal impact on the future health of the tree. There is an informational link
from Loses to Treat as we expect Apple Jack to observe whether or not the apple
tree is losing its leaves prior to making the decision on treatment.

We need to specify the utility functions enabling us to compute the expected
utility of the decision options. This is done by adding utility functions to the
influence diagram. Each utility function will represent a term of an additively
decomposing utility function, and each term will contribute to the total utility. The
utility functions are shown in Fig. 4.8.

The utility function C specifies the cost of the treatment, while utility function H
specifies the reward of the harvest. The latter depends on the state of Sick™,
indicating that the production of apples depends on the health of the tree.

Kjeerulff, U. B., & Madsen, A. L. (2012). Bayesian networks and influence diagrams : A guide to construction and analysis. ProQuest

Ebook Central <a onclick=window.open(‘http://ebookcentral.proquest.com’,’_blank’) href="http://ebookcentral.proquest.com’ target="_blank" style="cursor: pointer;

Created from th-ab on 2021-09-02 16:17:04.



Copyright © 2012. Springer New York. All rights reserved.

4.2 Decision Making Under Uncertainty 87

Fig. 4.8 A complete
qualitative representation of
the influence diagram used
for decision making in Apple
Jack’s orchard

Dry

Sick

Table 4.6 The conditional Sick*
probability distribution

P(Sick* | Treat, Sick) Treat Sick no yes
no no 0.98 0.02
no yes 0.01 0.99

yes no 0.99 0.01
yes yes 0.8 0.2

Table 4.7 The conditional Dry*
probability distribution

P(Dry* |Dry) Dry no yes

no 0.95 0.05
yes 0.4 0.6

Table 4.8 The conditional Loses™
probability distribu-

Dry*  Sick® no es
tion P(Loses™ | Dry*, Sick™) Y y

no no 0.98 0.02
no yes 0.1 0.9
yes no 0.15 0.85

yes yes 0.05 0.95

Figure 4.8 shows the complete qualitative representation of the influence dia-
gram N = (X, G, P,U). To complete the quantitative representation as well, we
need to specify the conditional probability distributions, P, and utility functions, U,
of N. Recall that a decision variable does not have any distribution. The appropriate
probability distributions are specified in Tables 4.6-4.8.

If we have a healthy tree (Sick™ is in state no), then Apple Jack will get an income
of € 200, while if the tree is sick (Sick™ is in state yes), his income is only € 30, that
is, H(Sick®) = (200, 30). To treat the tree, he has to spend € 80, that is, C(Treat) =
(0, —80).

Since Dry* and Loses™ are not relevant for the decision on whether or not to treat
and since we do not care about their distribution, we remove them from our model
producing the final model shown in Fig. 4.9. Variables Dry* and Loses™ are in fact
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[Fea }—><c>

Fig. 4.9 A simplified
influence diagram for the
decision problem of Apple

Jack @
< G

barren variables, see Sect. 3.3.4 on page 53. In an influence diagram, a variable is
a barren variable when none of its descendants are utility nodes, and none of its
descendants are ever observed.

The purpose of our influence diagram is to be able to determine the optimal
strategy for Apple Jack. After solving N, we obtain the following policy (Streat :
Loses — dom(Treat)) for Treat:

no Loses =no
8Treat(|-oses) =

yes Loses = yes

Hence, we should only treat the tree when it loses its leaves. In Sect. 5.2, we describe
how to solve an influence diagram. O

Notice that since a policy is a mapping from all possible observations to decision
options, it is sufficient to solve an influence diagram once. Hence, the computed
strategy can be used by the decision maker each time she or he is faced with the
decision problem.

Implications of Perfect Recall

As mentioned above, when using influence diagrams to represent decision problems,
we assume perfect recall. This assumption states that at the time of any decision, the
decision maker remembers all past decisions and all previously known information
(as enforced by the informational links). This implies that a decision variable and all
of its parent variables are informational parents of all subsequent decision variables.
Due to this assumption, it is not necessary to include no-forgetting links in the DAG
of the influence diagram as they—if missing—will implicitly be assumed present.

Example 4.9 (Jensen, Jensen & Dittmer (1994)). Let N be the influence diagram in
Fig. 4.10 on the facing page. This influence diagram represents a decision problem
involving four decisions D, D,, D3, and D, in that order.

From the structure of N, the following partial ordering on the random and
decision variables can be read:

{B}< Dy <{E,F}< Dy <{}<D3<{G}<Dy<{A,C,D,H,I1,J,K, L}
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Fig. 4.10 An influence diagram representing the sequence of decisions Dy, D, D3, D4

This partial ordering specifies the flow of information in the decision problem
represented by N. Thus, the initial (relevant) information available to the decision
maker is an observation of B. After making a decision on D, the decision maker
observes £ and F. After the observations of £ and F, a decision on D5 is made,
and so on.

Notice that no-forgetting links have been left out, for example, there are no links
from B to D;, D3, or Dy4. These links are included in Fig. 4.11. The difference in
complexity of reading the graph is apparent.

As this example shows, a rather informative analysis can be performed by reading
only the structure of the graph of N. O

4.2.2 Conditional LQG Influence Diagrams

Conditional linear—quadratic Gaussian influence diagrams combine conditional lin-
ear Gaussian Bayesian networks, discrete influence diagrams, and quadratic utility
functions into a single framework supporting decision making under uncertainty
with both continuous and discrete variables (Madsen & Jensen 2005).

Definition 4.5. A CLQG influence diagram N = (X, G, P, &, U) consists of:

* ADAG S = (V, E) with nodes, V, and directed links, E, encoding dependence
relations and information precedence including a total order on decisions
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Fig. 4.11 The influence diagram of Fig. 4.10 with no-forgetting links

* A set of random variables, X, and decision variables, X p, such that X = Xc U
X p represented by nodes of G

e A set of conditional probability distributions, P, containing one distribution,
P (X, | Xpae), for each discrete random variable X,

* A set of conditional linear Gaussian probability density functions, &, containing
one density function, p(Y,,| X pa(w)), for each continuous random variable Y,,

* A set of linear—quadratic utility functions, U, containing one utility func-
tion, u(Xpa(v)), for each node v in the subset V; C V of utility nodes

We refer to a conditional linear—quadratic Gaussian influence diagram as a
CLQG influence diagram. The chain rule of CLQG influence diagrams is

EUXa =i.Xr) = P(Xa =) % Nixp (). 07(0) % D t(Xpaco)

z€Vy
= 1_[ P(iv‘ipa(v)) * 1_[ p(yw|Xpa(w)) *
vEVA weVr
Z u(Xpa(z))
7€y

for each configuration i of X 4.
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Fig. 4.12 A CLQG influence
diagram for a simple guessing
game

Recall that in the graphical representation of a CLQG influence diagram,
continuous utility functions are represented by double rhombuses and continuous
decision variables as double rectangles, see Table 2.2 on page 23 for an overview of
vertex symbols.

A CLQG influence diagram is a compact representation of a joint expected
utility function over continuous and discrete variables, where continuous variables
are assumed to follow a linear Gaussian distribution conditional on a subset of
discrete variables, while utility functions are assumed to be linear—quadratic in
the continuous variables (and constant in the discrete). This may seem a severe
assumption which could be limiting to the usefulness of the CLQG influence
diagram. The assumption seems to indicate that all local utility functions specified in
a CLQG influence diagram should be linear—quadratic in the continuous variables.
This is not the case, however, as the following examples show. We will consider the
assumption in more detail in Sect. 5.2 on solving decision models.

Example 4.10 (Guessing Game (Madsen & Jensen 2005)). Figure 4.12 illustrates
a CLQG influence diagram, N, representation of a simple guessing game with two
decisions.

The first decision, represented by the discrete decision variable Play with
states reward and Play, is to either accept an immediate reward or to play a game
where you will receive a payoff determined by how good you are at guessing the
height of a person, represented by the continuous random variable Height, based
on knowledge about the sex of the person, represented by the discrete random
variable Sex with states female and male. The second decision, represented by the
real-valued decision variable Guess, is your guess on the height of the person given
knowledge about the sex of the person.

The payoffis a constant (higher than the reward) minus the distance of your guess
from the true height of the person measured as height minus guess squared.

To quantify N, we need to specify a prior probability distribution for Sex, a
conditional Gaussian distribution for Height and a utility function over Play, Guess,
and Height. Assume the prior distribution on Sex is P(Sex) = (0.5, 0.5), whereas
the distribution for Height is

L (Height|female) = N(170, 400)
L (Height|male) = N(180, 100).
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Fig. 4.13 A revised version
of the oil wildcatter problem

QO

We assume the average height of a female to be 170 cm with a standard deviation
of 20 cm and average height of a male to be 180 cm with a standard deviation
of 10 cm. The utility function over Play, Guess, andHeight is

u(play, dy, h) = 150 — (h — a’z)2
u(reward, d, h) = 100.

We assume the immediate reward is 100. After solving N, we obtain an optimal
strategy A = {8Playa SGuess)

Opiay = play
Sauess(play, female) = 170
Sauess(play, male) = 180.

The optimal strategy is to guess that the height of a female person is 170 cm and the
height of a male person is 180 cm.

In this example the policy for Guess reduces to a constant for each configuration
of its parent variables. In the general case, the policy for a continuous decision
variable is a multilinear function in its continuous parent variables given the discrete
parent variables. O

As another example of a CLQG influence diagram, consider a revised extension
of the oil wildcatter problem of Raiffa (1968) (Example 4.5 on page 82). The revised
Oil Wildcatter problem, which is further revised here, is due to Cobb & Shenoy
(2004).

Example 4.11 (Oil Wildcatter (Madsen & Jensen 2005)). The network of the
revised version of the Oil Wildcatter problem is shown in Fig. 4.13. First, the
decision maker makes a decision on whether or not to perform a test Test of the
geological structure of the site under consideration. When performed, this test
will produce a test result, Seismic depending on the amount of oil Oil. Next, a
decision Drill on whether or not to drill is made. There is a cost Cost associated with
drilling, while the revenue is a function of oil volume Volume and oil price Price.
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We assume the continuous random variables (i.e., cost of drilling, oil price, and
oil volume) to follow (conditional) Gaussian distributions. The utility function can
be stated in thousands of euros as U;(Test = yes) = —10, U,(Cost = ¢, Drill =
yes) = —c, Us(Volume = v, Price = p, Drill = yes) = v * p, and zero for the no
drill and no test situations.

If the hole is dry, then no oil is extracted: £(Volume|Qil = dry) = N(0,0). If
the hole is wet, then some oil is extracted: £ (Volume|Qil = wet) = N(6, 1). If the
hole is soaking with oil, then a lot of oil is extracted: £(Volume|Qil = soaking) =
N(13.5,4). The unit is a thousand barrels. The cost of drilling follows a Gaussian
distribution £(Cost|Drill = yes) = N(70,100). We assume that the price of
oil Price also follows a Gaussian distribution £ (Price) = N(20, 4).

Notice that the continuous utility functions U, and U; are not linear—quadratic in
their continuous domain variables. O

4.2.3 Limited Memory Influence Diagrams

The framework of influence diagrams offers compact and intuitive models for
reasoning about decision making under uncertainty. Two of the fundamental as-
sumptions of the influence diagram representation are the no-forgetting assumption
implying perfect recall of the past and the assumption of a total order on the
decisions. The limited memory influence diagram framework (LIMID) (Lauritzen
& Nilsson 2001) relaxes both of these fundamental assumptions.

Relaxing the no-forgetting and the total order (on decisions) assumptions largely
increases the class of multistage decision problems that can be modeled. LIMIDs
allow us to model more types of decision problems than the ordinary influence
diagrams.

The graphical difference between the LIMID representation and the ordinary
influence diagram representation is that the latter representation (as presented in
this book) assumes some informational links to be implicitly present in the graph.
This assumption is not made in the LIMID representation. For this reason, it is
necessary to explicitly represent all information available to the decision maker at
each decision.

The definition of a limited memory influence diagram is as follows.

Definition 4.6. A LIMID N = (X, G, P, U) consists of:

* ADAG G = (V, E) with nodes V' and directed links E encoding dependence
relations and information precedence.

e A set of random variables, X, and discrete decision variables, Xp, such
that X = X¢ U Xp represented by nodes of G.

* A set of conditional probability distributions, P, containing one distribution,
P (X, | Xpa@)), for each discrete random variable X,.

* A set of utility functions, U, containing one utility function, u(Xpa(,)), for each
node v in the subset Vy C V' of utility nodes.
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Fig. 4.14 A LIMID
representation of a decision
scenario with two unordered
decisions

——<v)

Using the LIMID representation, it is possible to model multistage decision
problems with unordered sequences of decisions and decision problems in which
perfect recall cannot be assumed or may not be appropriate. This makes the LIMID
framework a good candidate for modeling large and complex domains using an
appropriate assumption of forgetfulness of the decision maker. Notice that all
decision problems that can be represented as an ordinary influence diagram can
also be represented as a LIMID.

Example 4.12 (LIMID). Figure 4.14 shows an example of a LIMID representa-
tion N = (X, G, P, U) of a decision scenario with two unordered decisions. Prior
to decision D;, observations on the values of A and C are made, while prior to
decision D, an observation on the value of E is made. Notice that the observations
on A and C made prior to decision D; are not available at decision D; and vice
versa for the observation on E. O

Example 4.13 (Breeding Pigs (Lauritzen & Nilsson 2001)). A farmer is growing
pigs for a period of four months and subsequently selling them. During this period,
the pigs may or may not develop a certain disease. If a pig has the disease at the
time, it must be sold for slaughtering; its expected market price is €40. If it is
disease free, its expected market price as a breeding animal is € 135.

Once a month, a veterinarian inspects each pig and makes a test for presence of
the disease. If a pig is ill, the test will indicate this with probability 0.80, and if the
pig is healthy, the test will indicate this with probability 0.90. At each monthly visit,
the doctor may or may not treat a pig for the disease by injecting a certain drug. The
cost of an injection is € 13.

A pig has the disease in the first month with probability 0.10. A healthy pig
develops the disease in the following month with probability 0.20 without injection,
whereas a healthy and treated pig develops the disease with probability 0.10, so the
injection has some preventive effect. An untreated pig that is unhealthy will remain
so in the following month with probability 0.90, whereas the similar probability
is 0.50 for an unhealthy pig that is treated. Thus, spontaneous cure is possible, but
treatment is beneficial on average.
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Fig. 4.15 Three
test-and-treat cycles are
performed prior to selling a

pig
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The qualitative structure of the LIMID representation of this decision problem
is shown in Fig. 4.15. Notice that we make the assumption that the test result R;
is only available for decision D;. This implies that the test result is not taken into
account for future decisions as it is either forgotten or ignored. O

The above example could be modeled as a standard influence diagram (assuming
perfect recall), but if more test-and-treat cycles must be performed, the state space
size of the past renders decision making intractable. Therefore, it is appropriate to
make the decision on whether or not to treat based on the current test result (and
not considering past test results and possible treatments)—in this case, individual
records for the pigs need not be kept. In short, the example illustrates a situation
where instead of keeping track of all past observations and decisions, some of these
are deliberately ignored (in order to maintain tractability of the task of computing
policies).

4.3 Object-Oriented Probabilistic Networks

As large and complex systems are often composed of collections of identical
or similar components, models of such systems will naturally contain repetitive
patterns. A complex system will typically be composed of a large number of
similar or even identical components. This composition of the system should be
reflected in models of the system to support model construction, maintenance, and
reconfiguration. For instance, a diagnosis model for diagnosing car start problems
could reflect the natural decomposition of a car into its engine, electrical system,
fuel system, etc.

To support this approach to model development, the framework of object-
oriented probabilistic networks has been developed, see, for example, (Koller &
Pfeffer 1997, Laskey & Mahoney 1997, Neil, Fenton & Nielsen 2000). Object-
orientation may be defined in the following way
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Fig. 4.16 M is an instance of N
a network class Cy¢ within l\C )

another network class Coy
-~ 7N
1 Cr ) LG )
z ~_"7 M ~_7

object-orientation = objects + inheritance,

where objects are instances of classes and inheritance defines a relationship between
classes. Thus, we need to introduce the notion of objects and classes. In this section,
we introduce the notion of object-oriented probabilistic networks (OOPNs).

The basic OOPN mechanisms described below support a type of object-oriented
specification of probabilistic networks, which makes it simple to reuse models, to
encapsulate submodels (providing a means for hierarchical model specification),
and to perform model construction in a top-down fashion, a bottom-up fashion, or a
mixture of the two (allowing repeated changes of level of abstraction).

An object-oriented modeling paradigm provides support for working with
different levels of abstraction in constructing network models. Repeated changes of
focus are partly due to the fact that humans naturally think about systems in terms
of hierarchies of abstractions and partly due to lack of ability to mentally capture
all details of a complex system simultaneously. Specifying a model in a hierarchical
fashion often makes the model less cluttered and thus provides a better means of
communicating ideas among knowledge engineers, domain experts, and users.

In the OOPN paradigm we present, an instance or object has a set of variables
and related functions (i.e., probability distributions, probability densities, utility
functions, and precedence constraints). This implies that in addition to the usual
types of nodes, the graph of an OOPN model may contain nodes representing
instances of other networks encapsulated in the model. A node that does not
represent an instance of a network class is said to represent a basic variable.

An instance represents an instantiation of a network class within another network
class. A network class is a blueprint for an instance. As such, a network class is a
named and self-contained description of a probabilistic network, characterized by
its name, interface, and hidden part. As instances can be nested, an object-oriented
network can be viewed as a hierarchical description of a problem domain. In this
way, an instance M is the instantiation (or realization) of a network class Cy within
another network class Cy, see Fig. 4.16.

An instance connects to other variables via some of its (basic) variables. These
variables are known as its inferface variables. As we wish to support information
hiding, the interface variables usually only constitute a subset of the variables in the
network class.
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Let us be more precise. A network class C is a DAG over three pairwise disjoint
sets of nodes Z(C'), H(C), and O(C), where Z(C) are the input nodes, H(C') are
the hidden nodes, and O(C) are the output nodes of C. The set Z(C) U O(C) is the
interface of C. Interface nodes may represent either decision or random variables,
whereas hidden nodes may be instances of network classes, decision variables,
random variables, and utility functions.

Definition 4.7. An OOPN network class C = (N, Z, O) consists of:

* A probabilistic network N over variables X with DAG §

* A set of basic variables Z C X specified as input variables and a set of basic
variables O C X specified as output variables such that Z N O = @ and H =
X\ (ZUO)

In the graphical representation of an OOPN instances are represented as rect-
angles with arc-shaped corners, whereas input variables are represented as dashed
ovals, and output variables are represented as bold ovals. If the interface variables
of a network instance are not shown, then the instance is collapsed. Otherwise, it is
expanded.

Since an OOPN implements information hiding through encapsulation, we need
to be clear on scope rules. First, we define the notations of simple and qualified
names. If X is a variable of a network instance N, then X is the simple name of the
variable, whereas N.X is the qualified name (also known as the long name) of the
variable. The scope S(X) of a variable X (i.e., a basic variable or an instance) is
defined as the part of a model in which the declaration of X can be referred to by its
simple name.

The (internal) scope S(C) of a network class C is the set of variables and
instances which can be referred to by their simple names inside C. For instance,
the internal scope of the network Cy in Fig. 4.16 on the facing page is S(Cx) =
{Cy, C3,Cy, M}. The scope of an instance M of a network class Cyy, that is,
class(M) = Cay, is defined in a similar manner.

The interface variables Z(C) U O(C) of C are used to enlarge the visibility
of basic variables in the instantiations of C. The visibility of a variable X can be
enlarged by specifying it as either an input or an output variable of its class.

An input variable X of an instance M is a placeholder for a variable (the parent
of X) in the encapsulating class of M. Therefore, an input variable has at most
one parent. An output variable X of an instance M, on the other hand, enlarges the
visibility of X to include the encapsulating network class of M.

Notice that the scope of a variable is distinct from visibility of the variable.
In Fig. 4.16, the scope of output variable Cs is M, whereas its visibility is enlarged
to include N by defining it as an output variable of M.

An input variable / of an instance M of network class C is bound if it has a
parent X in the network class encapsulating M. Each input random variable / of a
class C is assigned a default prior probability distribution P(7), which becomes the
probability distribution of the variable / in all instances of C where I is an unbound
input variable. A link into a node representing an input variable may be referred to
as a binding link.
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Let M be an instance of network class C. Each input variable / € Z(C) has
no parent in C, no children outside C, and the corresponding variable of M has at
most one parent in the encapsulating class of M. Each output variable O € O(C)
may only have parents in Z(C) U H(C). The children and parents of H € H(C)
are subsets of the variables of C.

Example 4.14 (Object-Oriented Probabilistic Network). Figure 4.16 shows an
instance M of a network class Cy instantiated within another network class Cy.
Network class Cy has input variable C, hidden variables C3 and M, and output
variable C,. The network class Cy has input variables C; and C,, output vari-
able C3, and unknown hidden variables. The input variable C; of instance M is
bound to C; of Cy, whereas C, is unbound.

Since C; € Z(Cy) is bound to C; € Z(M), the visibility of C; € Z(Cy) is
extended to include the internal scope of M. Hence, when we refer to C; € Z(Cyy)
inside Cy¢, we are in fact referring to C; € Z(Cy) as C; € Z(Cyy) in instance M
is a placeholder for C, € Z(Cx) (i.e., you may think of C; € Z(Cy) as the formal
parameter of Cy¢ and C, € Z(Cy) as the actual parameter of M). O

Since an input variable / € Z(M) of an instance M is a placeholder for a
variable Y in the internal scope of the encapsulating instance of M, type checking
becomes important when the variable Y is bound to /. The variable I enlarges
the visibility of Y to include the internal scope of M, and it should therefore be
equivalent to Y. We define two variables Y and X to be equivalent as follows:

Definition 4.8. Two variables X and Y are equivalent if and only if they are of the
same kind, category, and subtype with the same state labels in the case of discrete
variables.

This approach to type checking is referred as strong type checking.

If a model contains a lot of repetitive structure, its construction may be tiresome,
and the resulting model may even be rather cluttered. Both issues are solved when
using object-oriented models. Another key feature of object-oriented models is
modularity. Modularity allows knowledge engineers to work on different parts of the
model independently once an appropriate interface has been defined. The following
example will illustrate this point.

Example 4.15 (Apple Jack’s Garden). Let us assume that Apple Jack from
Example 4.1 on page 71 has a garden of three apple trees (including his finest apple
tree). He may want to reason about the sickness of each tree given observations on
whether or not some of the trees in the garden are losing their leaves.

Figure 4.17 shows the apple tree network class. The prior of each tree being sick
will be the same, while the dryness of a tree is caused by a drought. The drought
is an input variable of the apple tree network class. If there is a drought, this will
impact the dryness of all trees. The prior on drought is P(Drought) = (0.9,0.1),
while the conditional distribution of Dry conditional on Drought is shown in
Table 4.9.
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Fig. 4.17 The apple tree -

network class \, Drought »

———

—_— -

Table 4.9 The conditional Dry
probability Drought no yes
distribution P (Drought|Dry)

no 0.85 0.15

yes 0.35  0.65
Fig. 4.18 The apple garden
network consisting of three @
instantiations of the apple tree
network

\/ - -
( Drought /\
Tree;

Figure 4.18 shows the network class of the apple garden. The input vari-
able Drought of each of the instances of the apple tree network class is bound to
the Drought variable in the apple garden network class. This enlarges the visibility
of the Drought variable (in the apple garden network class) to the internal scope
defined by each instance.

The two instances Tree; and Tree, are collapsed (i.e., not showing the interface
variables), while the instance Trees is expanded (i.e., not collapsed) illustrating the
interface of the network class.

The Drought variable could be an input variable of the apple garden network class
as well as it is determined by other complex factors. For the sake of simplicity of
the example, we have made it a hidden variable of the apple garden network class.

O

As mentioned above, a default prior distribution P(X) is assigned to each input
variable X € Z(C) of the class C = (N, O, 7). Assigning a default potential to
each input variable X implies that any network class is a valid probabilistic network
model.
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4.3.1 Chain Rule

It should be clear from the above discussion that each OOPN encodes either a
probability distribution or an expected utility function. For simplicity, we will
discuss only the chain rule for object-oriented (discrete) Bayesian networks. The
chain rule of an object-oriented Bayesian network reflects the hierarchical structure
of the model.

An instance M of network class C encapsulates a conditional probability
distribution over its random variables given its unbound input nodes. For further
simplicity, let C = (N,Z,O) be a network class over basic discrete random
variables only (i.e., no instances, no decisions, and no utilities) with N = (X, G, P)
where X € X is the only input variable, that is, X € Z and |Z| = 1. Since X
has a default prior distribution, N is a valid model representing the joint probability
distribution

P(X)=PX) [] POVl Xpua)-
n#X

In general, an instance M is a representation of the conditional probability
distribution P(O|Z’) where Z' C T is the subset of bound input variables of M

PoOIT)Y = [] P[] POl Xpa)-

XeI\T’ Y, ¢T

4.3.2 Unfolded OOPNs

An object-oriented network N has an equivalent flat or unfolded network model
representation M. The unfolded network model of an object-oriented network N is
obtained by recursively unfolding the instance nodes of N. The unfolded network
representation of a network class is important as it is the structure used for inference.

The joint distribution of an object-oriented Bayesian network model is equivalent
to the joint distribution of its unfolded network model

P(x) = 1_[ P(Xv‘Xpa(v))7
X,€X

where M = (X, G, P) is the unfolded network.

4.3.3 Instance Trees

An object-oriented model is a hierarchical model representation. The instance tree T
of an object-oriented model N is a tree over the set of instances of classes in N. Two
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Fig. 4.19 An instance tree

nodes v; and v; in T (with v; closer to the root of T' than v;) are connected by an
undirected link if and only if the instance represented by v; contains the instance
represented by v;. The root of an instance tree is the top-level network class not
instantiated in any other network class within the model. Notice that an instance
tree is unique.

In addition to the notion of default potentials, there is the notion of the default
instance. Let C be a network class with instance tree 7. Each non-root node v of T
represents an instance of a class C,, whereas the root node r of T represents an
instance of the unique class C,, which has not been instantiated in any class. This
instance is referred to as the default instance of C,.

Example 4.16 (Instance Tree). Figure 4.19 shows the instance tree of a network
class N where the root is the default instance of N.

Each node v of T represents an instance M, and the children of v in T represent
instances in M. O

4.3.4 Inheritance

Another important concept of the OOPN framework is inheritance. For simplicity,
we define inheritance as the ability of an instance to take its interface definition from
another instance. Let C| be a network class with input variables /(C}) and output
variables O(Cy), that is, C; = (N1,Zy, O;). A network class C; = (N3, Z;, 0,)
may be specified as a subclass of C; if and only if Z; € 7, and O; € O,. Hence,
subclasses may enlarge the interface.

Inheritance is not to the knowledge of the authors implemented in any widely
available software supporting OOPN.

Kjeerulff, U. B., & Madsen, A. L. (2012). Bayesian networks and influence diagrams : A guide to construction and analysis. ProQuest

Ebook Central <a onclick=window.open(‘http://ebookcentral.proquest.com’,’_blank’) href="http://ebookcentral.proquest.com’ target="_blank" style="cursor: pointer;

Created from th-ab on 2021-09-02 16:17:04.



Copyright © 2012. Springer New York. All rights reserved.

102 4 Probabilistic Networks
4.4 Dynamic Models

The graph of a probabilistic network is restricted to be a finite acyclic directed graph,
see Sect. 2.1. This seems to imply that probabilistic networks as such do not support
models with feedback loops or models of dynamic systems changing over time. This
is not the case. A common approach to representing and solving dynamic models or
models with feedback loops is to unroll the dynamic model for the desired number of
time steps and treat the resulting network as a static network. Similarly, a feedback
loop can be unrolled and represented using a desired number of time steps. The
unrolled static network is then solved using a standard algorithm applying evidence
at the appropriate time steps.

As an example of a dynamic model, consider the problem of monitoring the state
of a dynamic process over a specific period of time. Assume the network of Fig. 4.20
is an appropriate model of the causal relations between variables representing the
system at any point in time. The structure of this network is static in the sense
that it represents the state of the system at a certain point in time. In the process
of monitoring the state of the system over a specific period of time, we will make
observations on a subset of the variables in the network and make inference about
the remaining unobserved variables. In addition to reasoning about the current state
of the system, we may want to reason about the state of the system at previous
and future points in time. For this usage, the network in Fig. 4.20 is inadequate.
Furthermore, the state of the system at the current point in time will impact the state
of the system in the future and be impacted by the state of the system in the past.

What is needed is a time-sliced model covering the period of time over which the
system should be monitored. Figure 4.21 indicates a time-sliced model constructed
based on the static network shown in Fig. 4.20. Each time-slice consists of the
structure shown in Fig. 4.20, while the development of the system is specified by
links between variables of different time-slices.

The temporal links of a time-slice #; are the set of links from variables of time-
slice #;_; into variables of time-slice #;. The temporal links of time-slice #; define the
conditional distribution of the variables of time-slice #; given the variables of time-

Fig. 4.20 The structure of a @

static network model

Kjeerulff, U. B., & Madsen, A. L. (2012). Bayesian networks and influence diagrams : A guide to construction and analysis. ProQuest

Ebook Central <a onclick=window.open(‘http://ebookcentral.proquest.com’,’_blank’) href="http://ebookcentral.proquest.com’ target="_blank" style="cursor: pointer;

Created from th-ab on 2021-09-02 16:17:04.



Copyright © 2012. Springer New York. All rights reserved.

4.4 Dynamic Models 103

smoothing prediction
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Fig. 4.21 The structure of a dynamic model with n time-slices

slice #;_;. The temporal links connect variables of adjacent time-slices. For instance,
the temporal links of time-slice #, in Fig. 4.21 is the set {(X ], X?), (X3, X7)}.

The interface of a time-slice is the set of variables with parents in the previous
time-slice. For instance, the interface of time-slice 7, in Fig. 4.21 is the set {X 2 X 32}.

Three additional concepts are often used in relation to dynamic models. Let i be
the current time step, then smoothing is the process of querying about the state of
the system at a previous time step j < i given evidence about the system at time 7,
filtering is the process of querying about the state of the system at the current time
step, and prediction is the process of querying about the state of the system at a
future time step j > i.

A dynamic Bayesian network is stationary when the transition probability
distributions are invariant between time steps. A dynamic Bayesian network is first-
order Markovian when the variables at time step i 4 1 are d-separated from the
variables at time step i — 1 given the variables at time step i. When a system is
stationary and Markovian, the state of the system at time i + 1 only depends on
its state at time 7, and the probabilistic dependence relations are the same for all 7.
The Markovian property implies that arcs between time-slices only go from one
time-slice to the subsequent time-slice.

A dynamic Bayesian network is referred to as either a dynamic Bayesian network
(DBN) or a time-sliced Bayesian network (TBN). See Kjerulff (1995) for more
details on dynamic Bayesian networks.

Example 4.17 (Apple Jack’s Finest Tree). Consider the Apple Jack network in
Fig. 4.1 of Example 4.1 on page 71. The network is used for reasoning about
the cause of Apple Jack’s finest apple tree losing its leaves. The network is static
and models the dependence relations between two diseases and a symptom at four
specific points in time where Apple Jack is observing his tree.
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Fig. 4.22 A model with four time-slices

Consider the case where Apple Jack is monitoring the development of the disease
over a period of time by observing the tree each day in the morning. In this case, the
level of dryness of the tree on a specific day will depend on the level of dryness on
the previous day and impact the level of dryness on the next day, similarly for the
level of sickness. The levels of dryness and sickness on the next day are independent
of the levels of dryness and sickness on the previous day given the levels of dryness
and sickness on the current day. This can be captured by a dynamic model.

Figure 4.22 shows a dynamic model with four time-slices. Each time step
models the state of the apple tree at a specific point in time (the dashed lines
illustrate the separation of the model into time-slices). The conditional probability
distributions P (Dry; |Dry;_;) and P(Sick; |Sick;_;) are the transition probability
distributions. The interface between time-slices i — 1 and i consists of Dry; and
SiCkl‘ .

Assume that it is the second day when Apple Jack is observing his tree. The
observations on Loses of the first and second day are entered as evidence on
the corresponding variables. Filtering is the task of computing the probability of the
tree being sick on the second day, smoothing is the task of computing the probability
of sickness on the first day, and prediction is the task of computing the probability
of the tree being sick on the third or fourth day. O

Dynamic models are not restricted to be Bayesian networks. Influence diagrams
and LIMIDs can also be represented as dynamic models.

4.4.1 Time-Sliced Networks Represented as OOPNs

Time-sliced networks are often represented using object-oriented networks as the
following example illustrates.

Example 4.18 (Breeding Pigs). Example 4.13 shows a LIMID representation of a
decision problem related to breeding pigs, see Fig. 4.15 on page 95. The decision
problem is in fact modeled as a time-sliced model where the structure of each time-
slice representing a test-and-treat cycle is shown in Fig. 4.23.
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Fig. 4.23 The test-and-treat P
cycle of the breeding pigs
network in Fig. 4.15

j Y
D]

©
(cycle, |—{ cycle, |—>{Cycle;

Fig. 4.24 The breeding pigs network as a time-sliced OOPN

~

Three instances of the network class in Fig. 4.23 are constructed to create the
network in Fig. 4.24. The use of object-oriented modeling has simplified the network
construction.

The network in Fig. 4.24 is equivalent to the network in Fig. 4.15 on page 95. OO

Kjerulff (1995) has described a computational system for dynamic time-sliced
Bayesian networks. The system implemented is referred to as dHugin. Boyen
& Koller (1998) have described an approximate inference algorithm for solving
dynamic Bayesian networks with bounds on the approximation error.

4.5 Summary

In this chapter we have introduced probabilistic networks for belief update and de-
cision making under uncertainty. A probabilistic network represents and processes
probabilistic knowledge. The qualitative component of a probabilistic network
encodes a set of (conditional) dependence and independence statements among
a set of random variables, informational precedence, and preference relations.
The quantitative component specifies the strengths of dependence relations using
probability theory and preference relations using utility theory.

We have introduced discrete Bayesian network models and CLG Bayesian
network models for belief update. A discrete Bayesian network supports the use
of discrete random variables, whereas a CLG Bayesian network supports the use
of a mixture of continuous and discrete random variables. The continuous variables
are constrained to be conditional linear Gaussian variables. This chapter contains a
number of examples that illustrate the use of Bayesian networks for belief update.
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Discrete influence diagrams, CLQG influence diagrams, and limited memory
influence diagrams were introduced as models for belief update and decision making
under uncertainty. An influence diagram is a Bayesian network augmented with
decision variables, informational precedence relations, and preference relations.
A discrete influence diagram supports the use of discrete random and decision
variables with an additively decomposing utility function. A CLQG influence
diagram supports the use of a mixture of continuous and discrete variables. The
continuous random variables are constrained to be conditional linear Gaussian
variables, while the utility function is constrained to be linear—quadratic. A limited
memory influence diagram is an extension of the discrete influence diagram where
the assumptions of no-forgetting and regularity (i.e., a total order on the decisions)
are relaxed. This allows us to model a large set of decision problems that cannot
be modeled using the traditional influence diagram representation. This chapter
contains a number of examples that illustrate the use of influence diagrams for
decision making under uncertainty.

Finally, we have introduced OOPNs. The basic OOPN mechanisms introduced
support a type of object-oriented specification of probabilistic networks, which
makes it simple to reuse models, to encapsulate submodels, and to perform model
construction at different levels of abstraction. This chapter contains a number of
examples that illustrate the use of the basic OOPN mechanisms in the model
development process. OOPNSs are well suited for constructing time-sliced networks.
Time-sliced networks are used to represent dynamic models.

In Chap. 5, we discuss techniques for solving probabilistic networks.

Exercises

Exercise 4.1. Peter and Eric are chefs at Restaurant Bayes. Peter works 6 days
a week, while Eric works one day a week. In 90% of the cases, Peter’s food is
high quality, while Eric’s food is high quality in 50% of the cases. One evening
Restaurant Bayes serves an awful meal.

Is it fair to conclude that Eric prepared the food that evening?

Exercise 4.2. One in a thousand people has a prevalence for a particular heart
disease. There is a test to detect this disease. The test is 100% accurate for people
who have the disease and is 95% accurate for those who do not (this means that 5%
of people who do not have the disease will be wrongly diagnosed as having it).

(1) If a randomly selected person tests positive, what is the probability that the
person actually has the heart disease?

Exercise 4.3. Assume a math class is offered once every semester, while an Al
class is offered twice. The number of students taking a class depends on the subject.
On average, 120 students take Al (0> = 500), while 180 students take math (0> =
1,000). Assume that on average 25% pass the Al exam (o> = 400) while 50% pass
the math exam (o> = 500).
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(a) What is the average number of students passing either a math or Al exam?

(b) What is the average number of students passing a math exam?

(c) What is the average number of students taking a math class when 80 students
pass the exam?

Exercise 4.4. Frank goes to the doctor because he believes that he has got the flu.
At this particular time of the year, the doctor estimates that one out of 1, 000 people
suffers from the flu. The first thing the doctor checks is whether Frank appears to
have the standard symptoms of the flu; if Frank suffers from the flu, then he will
exhibit these symptoms with probability 0.9, but if he does not have the flu, he
may still have these symptoms with probability 0.05. After checking whether or not
Frank has the symptoms, the doctor can decide to have a test performed which may
reveal more information about whether or not Frank suffers from the flu; the cost of
performing the test is € 40. The test can either give a positive or a negative result,
and the frequency of false-positives and false-negatives is 0.05 and 0.1, respectively.
After observing the test result (if any), the doctor can decide to administer a drug
that with probability 0.6 may shorten the sickness period if Frank suffers from the
flu (if he has not got the flu, then the drug has no effect). The cost of administering
the drug is € 100, and if the sickness period is shortened, the doctor estimates that
this is worth € 1, 000.

(a) Construct an influence diagram for the doctor from the description above.
(b) Specify the probability distributions and the utility functions for the influence
diagram.

Exercise 4.5. Assume that Frank is thinking about buying a used car for € 20, 000,
and the market price for similar cars with no defects is €23, 000. The car may,
however, have defects which can be repaired at the cost of € 5, 000; the probability
that the car has defects is 0.3. Frank has the option of asking a mechanic to perform
(exactly) one out of two different tests on the car. Test; has three possible outcomes,
namely, no defects, defects, and inconclusive. For Test, there are only two possible
outcomes (no defects and defects). If Frank chooses to have a test performed on the
car, the mechanic will report the result back to Frank who then decides whether or
not to buy the car; the cost of Test; is € 300, and the cost of Test, is € 1, 000.

(a) Construct an influence diagram for Frank’s decision problem.

(b) Calculate the expected utility and the optimal strategy for the influence
diagram; calculate the required probabilities from the joint probability table (over
the variables Test;, Test,, and StateOfCar) specified below.

Test;

no defects defects inconclusive
no defects  (0.448,0.00375) (0.028,0.05625) (0.084,0.015)
defects (0.112,0.01125) (0.007,0.16875) (0.021,0.045)

Test,

Exercise 4.6. An environmental agency visits a site where a chemical production
facility has previously been situated. Based on the agency’s knowledge about the
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facility, they estimate that there is a 0.6 risk that chemicals from the facility have
contaminated the soil. If the soil is contaminated (and nothing is done about it),
all people in the surrounding area will have to undergo a medical examination
due to the possible exposure; there are 1,000 people in the area, and the cost of
examining/treating one person is $100. To avoid exposure, the agency can decide
to remove the top layer of the soil which, in case the ground is contaminated, will
completely remove the risk of exposure; the cost of removing the soil is $30, 000.
Before making the decision of whether or not to remove the top layer of soil, the
agency can perform a test which will give a positive result (with probability 0.9) if
the ground is contaminated; if the ground is not contaminated, the test will give a
positive result with probability 0.01. The cost of performing the test is $1, 000.

(a) Construct an influence diagram for the environmental agency from the descrip-
tion above.

(b) Specify the probability distributions and the utility functions for the influence
diagram.

Exercise 4.7. A company has observed that one of their software systems is
unstable, and they have identified a component which they suspect is the cause of
the instability. The company estimates that the prior probability for the component
being faulty is 0.01, and if the component is faulty, then it causes the system
to become unstable with probability 0.99; if the component is not faulty, then
the system may still be unstable (due to some other unspecified element) with
probability 0.001.

To try to solve the problem, the company must first decide whether to patch the
component at a cost € 10, 000 : if the component is faulty, then the patch will solve
the fault with probability 0.95 (there may be several things wrong, not all of which
may be covered by the patch), but if the component is not faulty, then the patch
will have no effect. The company also knows that in the near future the vendor of
the component will make another patch available at the cost of €20, 000; the two
patches focus on different parts of the component. This new patch will solve the
problem with probability 0.99, and (as for the first patch) if the component is not
faulty, then the patch will have no effect. Thus, after deciding on the first patch, the
company observes whether or not the patch solved the problem (i.e., is the system
still unstable?) and it then has to decide on the second patch. The company estimates
that (after the final decision has been made) the value of having a fully functioning
component is worth € 100, 000.

(a) Construct an influence diagram for the company from the description above.
(b) Specify the probability distributions and the utility functions for the influence
diagram.

Exercise 4.8. Consider a stud farm with ten horses where Cecily has unknown mare
and sire, John has mare Irene and sire Henry, Henry has mare Dorothy and sire
Fred, Irene has mare Gwenn and sire Eric, Gwenn has mare Ann and unknown sire,
Eric has mare Cecily and sire Brian, Fred has mare Ann and unknown sire, Brian
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Fig. 4.25 The stud farm

pedigree

has unknown mare and sire, Dorothy has mare Ann and sire Brian, and Ann has
unknown mare and sire, see Fig. 4.25.

A sick horse has genotype aa, a carrier of the disease has genotype aA, and a
noncarrier has genotype AA. P(aa,aA, AA) = (0.04,0.32,0.64).

(a) Construct an object-oriented network representation of the stud farm problem.
(b) What is the probability of each horse being sick/a carrier/a noncarrier once we
learn that John is sick?
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