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Machine Learning (Herbert Simon)

Learning is any process by which a 

system improves performance from 

experience.
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Machine learning Algorithm

Machine Learning is an application of artificial intelligence 
where a computer/machine learns from the past experiences 
(input data) and makes future predictions. The performance of 
such a system should be at least human level.
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Practical use of ML:
Where can we find ML used?

 Self driving cars (Tesla)

 Voice interfaces (Alexa, Siri)

 Face recognition (Google Photos)

 Recomender systems (Netflix, Amazon)

 Games (AlphaGo)

 Character recognition (Post offices)

 Banking systems

 Medical diagnosis

 ML for Human-Computer Interaction 
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When Do We Use Machine Learning?

 ML is used when:

  Human expertise does not exist (navigating on Mars)

 Humans can’t explain their expertise (speech recognition)

 Models must be customized (personalized medicine)

 Models are based on huge amounts of data (genomics)
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A classic example of a task that requires machine learning:
It is very hard to say what makes a 2
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Some more examples of tasks that are best
solved by using a learning algorithm

 Recognizing patterns:

 – Facial identities or facial expressions

 – Handwritten or spoken words

 – Medical images

 Generating patterns:

 – Generating images or motion sequences

 Recognizing anomalies:

 – Unusual credit card transactions

 – Unusual patterns of sensor readings in a nuclear power plant

 Prediction:

 – Future stock prices or currency exchange rates

 Slide credit: Geoffrey Hinton
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 Web search

  Computational biology

  Finance

  E-commerce

  Space exploration

  Robotics

  Information extraction

  Social networks

  Debugging software
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Types of Learning

 Supervised (inductive) learning

 – Given: training data + desired outputs (labels)

 Unsupervised learning

 – Given: training data (without desired outputs)

 Semi-supervised learning

 – Given: training data + a few desired outputs

 Reinforcement learning

 – Rewards from sequence of actions
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Supervised Learning: Regression
• Given (x1, y1), (x2, y2), ..., (xn, yn)
• Learn a function f(x) to predict y given x
– y is real-valued == regression
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Unsupervised Learning
• Given x1, x2, ..., xn (without labels)
• Output hidden structure
– E.g., clustering
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Designing a Learning System
• Choose the training experience
• Choose exactly what is to be learned
– i.e. the target function
• Choose how to represent the target function
• Choose a learning algorithm to infer the target
function from the experience
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Every ML algorithm has three components:

 – Representation

 – Optimization

 – Evaluation
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Various Function Representations

 Numerical functions

 – Linear regression

 – Neural networks

 – Support vector machines

 Symbolic functions

 – Decision trees

 – Rules in propositional logic

 – Rules in first-order predicate logic

 -  Instance-based functions

 – Nearest-neighbor

 Probabilistic Graphical Models

 – Naïve Bayes

 – Bayesian networks

 – Hidden-Markov Models (HMMs)

 – Markov network
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Evaluation

  Accuracy

  Precision and recall

  Squared error

  Likelihood

  Posterior probability

  Cost / Utility

  Margin

  Entropy

  etc.
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Machine Learning27

𝑥 𝑓(𝑥) 𝑦



Machine Learning28
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Machine Learning29

2 𝑓 𝑥 = 2𝑥 4



Machine Learning30

2 𝑓 𝑥 = 2𝑥 4

Input Model Output
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𝑥 𝑓(𝑥) 𝑦

Input Model Output
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𝑥 𝑓(𝑥) Walking

Model?

*human activity recognition



Introduction into Machine Learning33

𝑓(𝑥) Walking

Model?
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IMU Data

*human activity recognition



Machine Learning34

𝑓(𝑥) dog

Model?

*object recognition
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𝑓(𝑥) speaker

Model?

*object recognition
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𝑓(𝑥)

Model?

Phone

IMU Data

Gil Levi, and Tal Hassner. "Age and gender classification using convolutional neural networks." 

In Proceedings of the CVPR workshops. 2015. IEEE: https://doi.org/10.1109/CVPRW.2015.7301352 

30 years

https://doi.org/10.1109/CVPRW.2015.7301352
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𝑓(𝑥)

Model?

Phone

IMU Data

Ira Kemelmacher-Shlizerman, Supasorn Suwajanakorn, and Steven M. Seitz. 2014. Illumination-aware age 

progression. In Proceedings of the CVPR 2024. IEEE. DOI: https://doi.org/10.1109/CVPR.2014.426 

https://doi.org/10.1109/CVPR.2014.426
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[But, he is a human being. He can observe and learn ]
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State of the world

Action

Rules

External Factor

Internal Factor

Unexpected 
occurence

Beliefs

Non-Monotonic logic Monotonic logic
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The classification and Regression problems are supervised, 
because the decision depends on the characteristics of the ground 
truth labels or values present in the dataset, which we define as 
experience 
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Teach a machine to identify vehicle types
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Classification

 Bayesian Classifier

 K-Nearest Neighbours

 Decision Tree

 Support Vector Machine

 Neural Network
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 k-Nearest Neighbors& Centroid Based Classifier
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Centroid Based Classifier
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 Decision Tree (Rule Based Approach)
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Set of rules can be visualized as a tree.
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Models

 “Traditional” Machine Learning

 Support Vector Machines

 Decision Trees

 Random Forest

 …

 “Deep” Learning Methods

 Neuronal Networks

 Convolutional Neuronal Networks

 Recurrent Neural Network (RNN)

 Generative Adversarial Network (GAN)

 …

Sven Mayer
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We will look at some 

of them in this 

lecture.

We will focus mainly on 

Deep Learning 

Methods.



Example

Human-Computer Interaction

Sven Mayer
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Example

Human-Computer Interaction
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Handcrafted algorithm
Pitch: 23°

Yaw: -42°

𝑓(𝑥)

Input OutputModel



22

15

32

15

22 11

8

72

6

6

6

4

160

6

6

2000

dense

Max

poolingMax

pooling

2

1

6

6

Max

pooling

Pitch: 23°

Yaw: -42°

Example

Human-Computer Interaction

Sven Mayer

84



Pitch: 23°

Yaw: -42°

22

15

32

15

22 11

8

72

6

6

6

4

160

6

6

2000

dense

Max

poolingMax

pooling

2

1

6

6

Max

pooling

Example

Human-Computer Interaction

Sven Mayer

85

8.9% 45.7% 



Neuronal Networks

What can be trained?

Sven Mayer

86

Frank Rosenblatt. "The perceptron: a probabilistic model for information storage and organization in the 

brain." Psychological review 65, no. 6 (1958): 386. DOI: https://psycnet.apa.org/doi/10.1037/h0042519 

https://psycnet.apa.org/doi/10.1037/h0042519


What is a Perceptron?

Single-Layer Perceptron

Sven Mayer
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Bayesian Classifier
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Conclusion

 Practical Examples

 General understanding of the model f(x)

 Deep Learning Approaches

 Perceptron

 Weights & biases can be trained

 Activation function

Introduction to Machine Learning

Sven Mayer

106



Driving Behavior107

𝑓(𝑥) Output

Model?

Input
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Thank You for Your Attention
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