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ABSTRACT

Multi-organizational collaborative decision making in high-magnitude crisis situations
requires real-time information sharing and dynamic modeling for effective response. In-
formation technology (IT) based decision support tools can play a key role in facilitating
such effective response. We explore one promising class of decision support tools based
on machine learning, known as support vector machines (SVM), which have the capa-
bility to dynamically model and analyze decision processes. To examine this capability,
we use a case study with a design science approach to evaluate improved decision-
making effectiveness of an SVM algorithm in an agent-based simulation experimental
environment. Testing and evaluation of real-time decision support tools in simulated
environments provides an opportunity to assess their value under various dynamic con-
ditions. Decision making in high-magnitude crisis situations involves multiple different
patterns of behavior, requiring the development, application, and evaluation of different
models. Therefore, we employ a multistage linear support vector machine (MLSVM)
algorithm that permits partitioning decision maker response into behavioral subsets,
which can then individually model and examine their diverse patterns of response be-
havior. The results of our case study indicate that ourMLSVM is clearly superior to both
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single stage SVMs and traditional approaches such as linear and quadratic discriminant
analysis for understanding and predicting behavior. We conclude that machine learning
algorithms show promise for quickly assessing response strategy behavior and for pro-
viding the capability to share information with decision makers in multi-organizational
collaborative environments, thus supporting more effective decision making in such
contexts.

Subject Areas: Distributed Decision Making, Dynamic Modeling, Informa-
tion Technology (IT) basedDecision Support Systems,Machine Learning Al-
gorithms, Multi-Organizational Collaborative Decision Making, Real-Time
Decision Tools, and Support Vector Machines (SVM).

INTRODUCTION

Multi-organizational collaborative decision making in high-magnitude crisis situ-
ations requires real-time information sharing and dynamic modeling for effective
response. Information technology (IT) based mobile, collaborative decision sup-
port tools can play a key role in facilitating effective and rapid response in such
situations (Chu & Spires, 2000; Yi & Davis, 2001; Venkatesh, 2006; Drnevich,
Brush, & Chaturvedi, 2010). Such tools allow dispersed and eclectic decision mak-
ers to address multilevel strategic and tactical problems (Goes, Pino, & Vakharia,
2008). However, having an IT-based decision support system (DSS) does not in
and of itself ensure high quality decision making. There are several factors that
impact decision making in a multi-organizational collaborative setting. Drnevich,
Ramanujam, Mehta, and Chaturvedi (2009) observed that affiliation and situation
play a critical role in how decision makers interpret information during different
phases of the crisis. Further, despite the use of the best available technologies,
coordination within and among teams tends to breakdown. There is also very little
visibility to the process of decisionmaking at different levels. The time lag between
data gathering and its interpretation, planning and execution, mis-interpretation of
intent, and the unfolding of unintended consequences characterize the high-impact
crisis situation. As such, anticipation of behaviors of decision makers at different
levels becomes important for an effective response. For example, decision makers
in the federal government need to anticipate the response at the state and the local
levels of government; likewise the state and local level decision makers need to an-
ticipate decisions at multiple levels to inform their decisions (McKay, Chaturvedi,
& Adams, 2011).

A class of decision support tools involving machine learning algorithms,
especially support vector machines (SVMs), has shown promise to dynamically
model and analyze incoming streams of data. SVMs have also shown good pre-
dictive and explanatory power in general management applications in support of
real-time decision making (e.g., Chi, Ersoy, Moskowitz, & Altinkemer, 2007a).
Thus, the purpose of this note is to: (i) Use a design science approach (e.g., Hevner,
March, Park, & Ram, 2004; Holmstrom, Ketokivi, & Hameri, 2009) to develop
and explore the viability and effectiveness of SVMs as a potentially more effective
real-time component of integrated decision support tools which can anticipate ac-
tions that will be taken at different levels in response to a crisis situation; (ii) Follow



Moskowitz et al. 479

the tradition of grounded business research (Guide & Van Wassenhove, 2007), to
explore the ability of SVMs to model, explain, and predict multi-organizational
collaborative decision-making behavior and response effectiveness through a case
study involving a high-magnitude crisis situation. In our case study we employ
an agent-based synthetic environment to simulate a crisis event, and then use
SVMs to model and examine alternative response strategies to the simulated cri-
sis as it unfolds. We find that when dealing with human behavior, particularly in
a multi-organizational command and control environment, standard single stage
SVMs may not adequately portray decision-making behavior across (and some-
times within) organizations. This limitation necessitated the development of a
multistage linear support vector machine (MLSVM) algorithm that would sequen-
tially permit modeling of different patterns of behavior among decision makers
within and across organizations and levels.

There are two specific objectives of this research note. The first objective
is to validate the effectiveness of SVMs as an automated generic IT–based deci-
sion support tool to model and improve the effectiveness of multi-organizational,
collaborative decision making in high-magnitude crisis situations. The second ob-
jective is to examine the anticipatory and explanatory effectiveness of a MLSVM
algorithm that would effectively capture different patterns of behavior of decision
makers in a multi-organizational setting. We hope that our research will show that
such a MLSVM algorithm can form the core of a set of IT-based tools to provide
real time, rapid, coordinated decision support–providing a significant contribution
to practice. It is technically feasible and rather easy to automate such SVM-based
tools for an integrated IT–based DSS that can dynamically model real-time be-
havior as data and responses accumulate, as well as share this information with
all involved decision makers. Such systems could also offer new directions for
grounded business research (e.g., Guide & Van Wassenhove, 2007), new antic-
ipatory capabilities not currently available to decision makers, and significantly
improve response effectiveness in practice.

The limitations of the approach we develop in this research note are largely
data focused. The use of SVMs in data-lean environments will be less effective,
limiting the predictive and explanatory power of the developed models. Moreover,
with human decision making in particular, behavior may change as people learn.
Hence, the models must change as behavior changes. We can deal with this change
requirement by developing adaptive SVM models that dynamically change with
the requirements.

We use a case study approach (e.g., Ross, Buffa, Droge, & Carrington,
2009) involving a U.S. Department of Homeland Security training exercise called
measured response (MR) where data streams from both a simulation and real-
world decision makers to the SVM tool. Our study proceeds as follows: (i) To
develop the initial design, we first review prior research on behavioral modeling of
collaborative decision making and discuss the agent-based synthetic environment
used to generate the data to train and test the MLSVM algorithm; (ii) We then
develop the MLSVM algorithm employed in our analysis; (iii) Next, to evaluate
and refine our solution, we compare the performance and behavioral implications
obtained from ourMLSVMwith othermachine learning andmultivariate statistical
modeling tools such as linear and nonlinear single stage SVMs as well as linear
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and quadratic discriminant analysis (LDA, QDA); and (iv) We conclude with a
discussion of the results of our exploration, their implications for future theory
development and practice, and offer suggested extensions for our research and its
applications.

THE STUDY

Related Research on the Decision Problem

Prior related research on collaborative decision making in crisis response has ex-
amined a wide variety of issues including goal competition and conflict (Kumar
& Van Dissel, 1996; Osborn & Hagedoorn, 1997; Westley & Vrendenburg, 1997;
Hardy & Phillips, 1998; Kumar & Niti, 1998; Drnevich et al., 2009), decision-
making effectiveness (Lin & Carley, 1993, 1997; Drnevich et al., 2010), response
strategies (Carley et al., 2004; Green & Kolesar, 2004), and behavior anticipation
and shaping (McKay et al., 2011). One common thread in this body of work is
that multi-organizational collaborative decision making is a multifaceted issue,
and research on this topic may take a variety of forms. It involves different schools
of thought, focus areas, and various methodological approaches (Osborn & Hage-
doorn, 1997). However, there exists a marked lacuna in the study of IT-based
decision support tools for collaborative decision-making, its underlying method-
ological modeling (Chu & Spires, 2000; Yi & Davis, 2001; Sexton, Sriram, &
Etheridge, 2003; Venkatesh, 2006; Drnevich et al., 2010), and tactics, techniques,
and procedures to operationalize it. To improve the capabilities of IT-based deci-
sion support tools, we examine the viability of SVM to dynamically model and
analyze incoming data to support real-time decision making. We next discuss the
intelligent agent-based synthetic environment used to simulate the crisis event for
the decision makers in our case study and then later discuss the development and
testing of an SVM-based decision support modeling tool.

Study Setup and Methodology

We use a design science approach to construct a synthetic environment for this
study. We utilize data from the MR homeland security training exercise (Drnevich,
Mehta, &Dietz, 2006), which combines agent-based simulation with experimental
gaming techniques, making it particularly useful for large and complex experi-
ments. MR features include scalability (the ability to run hundreds of thousands
of agents), human-in-the-loop capability (live human players in real-time exper-
iments), configurability (easy set up and modification), and modularity (multiple
different scenarios and organizational teams developed and integrated as needed).
TheMR exercise simulated a bio-terror attack on a major U.S. city utilizing tens of
thousands of artificial agents to represent the citizens of the simulated population.
Agents consist of four layers ofmodels to represent position,mobility, infectability,
and well-being, each calibrated in accordance with relevant research (Drnevich et
al., 2006). The intelligent agents ran on a distributed grid-computing platform com-
prised of two supercomputers connected by a gigabit network for large exercises
that can scale down to run in a client–server environment for smaller applications.
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The MR scenario provides multilayer geography (federal, state, and local)
to enable multiple agencies at each level to participate in a joint experimentation
environment. MR provides the ability for many human-in-the-loop players to
participate in an experiment alongside simulated entities. Players representing each
agency can execute their actions within the response framework in the scenario.
MR simulates the outcome of these actions in the context of scenario conditions
to project outcomes over time. The outcomes of multiple courses of action can
then be compared to evaluate the benefits. Throughout the simulation, human
players (agents) from different government agencies make decisions that affect the
outcome. These agents represent nine government entities, three each at federal,
state, and local levels. The agencies represented at each level are: the Department
of Homeland Security (DHS), the Department of Transportation (DOT), and the
Department of Health and Human Services (HHS). The responsibilities of each
agency differ based on both size and scope. Thus, although each shares common
goals, the means with which they can accomplish those goals varies within and
among agencies. For more information on the simulation platform andMR training
exercises reference Drnevich et al. (2006) and Chaturvedi, Dolk, and Drnevich
(in press).

Development of the High-Magnitude Crisis Decision Model

We limit our focus to developing and applying an MLSVM algorithm to model
and predict what decision makers in organizations would do in response to a
simulated high-magnitude crisis. Background and specifics on the development of
the high-magnitude crisis decision MLSVM model we employed are available in
Appendix A.

Decision Application
Discussion of decision context

Crisis situations of all types, by their general nature, involve nonroutine situations
that a single organization or their decision makers are unlikely to have faced.
As such, responding effectively to a crisis situation often involves drawing upon
the expertise of multiple decision makers from several organizations. In these
decision-making situations access to information across organizations and infor-
mation sharing within organizations is important for response effectiveness. In
high-magnitude crisis situations (i.e., those with significant threat to survival),
speed of response is also important for effective decision-making due to the gen-
erally dynamic nature of the situations. Such situations often involve rumors and
inaccurate information, and a lack of visibility of actions taken at different echelons
of decision making, resulting in an incomplete and often conflicting understanding
of the situation. Consequently, effective multi-organizational collaborative deci-
sion making involves both combined real-time information sharing and dynamic
modeling for effective response. In the remainder of this section, we provide an
overview of the decision making in the exercise and discuss the application of our
MLSVM model.
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Model validation

We validated our multistage machine learning algorithm by applying it to the MR
training exercise. We attempt to anticipate and explain the intervention strategies
of each decision maker in response to the simulated crisis event, with the ultimate
intention of providing such information as automated feedback either in real time
during a crisis situation or as lessons learned as part of a digitized, integrated DSS.
Part of our objective was to assess the value added by our algorithms vis-à-vis tra-
ditional single stage multivariate statistical and SVM algorithms. We use a total of
135 samples from the survey and simulation data collected in theMR exercise. The
dataset contained 15 explanatory variables, 6 of which were quantitative, depicting
the simulation environment. The remaining nine were indicator variables repre-
senting background information for each responder (e.g., level of position (federal,
state, or local), affiliated departments (DHS, HHS, DOT), and interaction between
levels and departments). We originally categorized the response variable, quaran-
tine strategy (QS), into one of five classes (QS1, QS2, Q3, QS4, QS5). This set of
response decisions ranged on a five-point ordinal scale from no intervention (QS1)
tomoderate (QS3) to extreme (QS5) intervention (quarantine) responses. Themod-
erate response strategies (QS2 and QS3) involved city block quarantines (CBQ),
whereas the extreme response strategy (QS4 and QS5) involved a full military-
enforced mass quarantine (MQ). Of the 135 responses (data points), only eight
chose QS2 and four chose QS5. Thus, we treated these as QS1 and QS4, respec-
tively. Hence, the five classes were aggregated into three, corresponding to QS1 (no
quarantine), QS3 (city block quarantine), andQS4 (military or extreme quarantine).
We provide a description of the simulation and survey variables from the exercise
used in the validation in Table 1 and the descriptive statistics of the simulation vari-
ables in Table 2. More information on the decision-making criteria, processes, and
outcomes in the MR exercise is available in Drnevich et al., (2006, 2009, 2010).

Table 1: Measured response exercise simulation and survey variable descriptions.

Variables Input/Output Type Description

AEL (X1) Input Indicator Appointed or elected participant
Fed (X2) Input Indicator Federal level participant
State (X3) Input Indicator State level participant
DHS (X4) Input Indicator DHS
HHS (X5) Input Indicator HHS
Fed∗DHS(X6) Input Indicator Interaction between Fed and DHS
Fed ∗HHS(X7) Input Indicator Interaction between Fed and HHS
State ∗DHS(X8) Input Indicator Interaction between State and DHS
State ∗DHS(X9) Input Indicator Interaction between State and HHS
HI (X10) Input Real Priority of health issues
TIN (X11) Input Discrete Total number of people infected
TPM (X12) Input Real Total public mood
TD (X13) Input Discrete Total number of people deceased
Round (X14) Input Discrete Round of exercise played
QS_prev (X15) Input Discrete Previous round QS choice
QS (Y) Output Discrete QS
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Table 2: Simulation variable summary statistics and correlation matrix.

Quantitative
Variables Mean SD Min Max Correlation Matrixa

1. HI 3.56 0.62 2.00 4.00 1.00
2. TIN 566 375 117 1208 0.068 1.00
3. TPM 3.97 0.15 3.81 4.4 −0.14 −0.14 1.00
4. TD 4.60 3.84 0 9 0.021 0.95∗ 0.086 1.00
5. Round 3.00 1.42 1 5 0.034 0.86∗ 0.11 0.96∗ 1.00
6. QS_prev 1.98 1.48 0 4 0.050 0.67∗ 0.062 0.69∗ 0.71∗

∗Denotes significance at p ≤ .05.
aAlthough some variables were significantly correlated, we kept them in the model, because
they were the decision variable available to the responders during the simulation exercise.
In this way, we could investigate the influence of each of these features on choice behavior.

We partitioned our data analysis approach into twomajor categories:Analysis
of decision (choice) performance of responders and analysis of theMLSVMmodel
with relative and absolute performance and behavior. We compared responder
performance across government levels, departments, and decision rounds. We
evaluated the MLSVM model in terms of model performance (y) as well as a
comparison of choice behavior among the governmental entities and factors (x)
used by these responders to make a quarantine choice. We then investigated the
factors by decision round to observe how their importance may have changed as
new results became available, as well as how current quarantine decisions were
affected by the most recent previous quarantine choice.

Results of Model Validation

To validate the MLSVM model we first standardized the input variables and then
randomly selected 90 of the 135 response decisions as the training set. Of these
data points, 32 responses involved no intervention (QS1), 36 responded with a
moderate CBQ (QS3), and 22 responded with a more extreme MQ (QS4). The
remaining 45 data points served as the testing (validation) set of which 17 involved
QS1, 18 involved QS3, and 10 involved QS4.

We based MLSVM model performance on its ability to accurately predict
a responder’s decision (classification) regarding QS1, QS3, and QS4. Using this
criterion, we compared MLSVM performance to the following algorithms: (i) a
single stage linear SVM (SLSVM), (ii) a single stage second-order polynomial
(quadratic) SVM (SPSVM), (iii) LDA, and (iv) QDA. We implemented the SVM
models in MATLAB using SVMlight (Joachims, 1998, 2002) and its MATLAB
interface (Schwaighofer, 2005).

We summarize the training and testing overall classification prediction ac-
curacies for each modeling algorithm in Table 3. LSVM and LDA exhibited
the lowest training and testing predictive power. Our SPSVM algorithm showed
the highest training accuracy (94.44%), but its testing accuracy was only 64.44%,
due to overfitting (resulting from the addition of interaction and squared terms in
the model). Our MLSVM algorithm achieved a training accuracy of 82.20% and
the highest testing accuracy of 68.89%.
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Table 3: Standardized coefficients of explanatory variables.

Stage One Stage Two

QS1 QS3 QS4 QS1 QS3 QS4

BIAS −1.59 0.97 −1.32 BIAS −1.71 1.00 0.31
AEL 0.00 −1.72 0.78 AEL 0.00 −2.00 0.63
FED 1.54 −2.27 0.75 FED −1.36 −2.00 1.03
STATE 0.36 −0.52 0.38 STATE 2.15 −2.00 −1.77
DHS −0.04 1.72 −1.74 DHS 1.65 −2.00 −1.70
HHS 0.00 0.59 −0.96 HHS 0.18 0.00 −1.08
FD∗DHS −0.60 −1.72 1.74 FD∗DHS −1.65 2.00 1.70
FD∗HHS 1.66 −1.70 −0.54 FD∗HHS −0.18 2.00 −0.21
SD∗DHS 0.63 −2.54 0.26 SD∗DHS −1.11 2.00 0.42
SD∗HHS 0.00 −0.14 −0.26 SD∗HHS 0.36 0.00 −0.22
HI −0.04 0.00 0.32 HI −0.53 0.00 0.37
TIN −3.74 7.55 −4.06 TIN 10.15 −0.01 −6.90
TPM −0.21 1.15 −0.54 TPM 2.51 0.00 −1.77
TD 7.81 −11.32 3.51 TD −12.86 0.01 9.04
ROUND −4.19 5.53 −0.74 ROUND 4.39 0.00 −3.76
QS_Prev −1.18 −0.41 1.16 QS_Prev −2.10 0.00 1.46

Stage Three

QS1 QS3 QS4

BIAS −2.50 −1.00 −0.14
AEL 0.00 0.00 0.00
FED 1.67 0.00 1.77
STATE 2.12 0.00 −1.11
DHS 1.78 0.00 −1.38
HHS 1.79 0.00 −1.38
FD∗DHS −3.20 0.00 1.77
FD∗HHS −1.79 2.00 0.00
SD∗DHS −1.78 0.00 0.55
SD∗HHS −1.79 0.00 0.27
HI 0.00 0.00 0.28
TIN 0.96 0.00 −8.70
TPM 0.46 0.00 −2.00
TD 1.78 −0.01 12.26
ROUND −2.45 0.00 −5.12
QS_Prev −0.44 0.00 1.67

The specific classification results of each method in terms of conditional ac-
curacies (P(T = x |M = x), probability of true response given model response) are
shown in Table 4. The conditional accuracies for QS3 (moderate quarantine) were
roughly comparable across all models. However, MLSVM was much better than
the other models in predicting QS1 (85.7%) and QS4 (66.7%). This observation
suggests that there are more differentiated patterns of behavior for the diver-
gent choices of no response (QS1) and more extreme response (QS4) decisions,
which are identifiable by our multistage model. Whenmaking a moderate response
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Table 4: Specific classification results of models.

MLSVM
True Response True Response

Training Summary Testing Summary
Model QS1 QS3 QS4 P(T = x |M = x) Model QS1 QS3 QS4 P(T = x |M = x)
QS1 27 2 1 90.0% QS1 12 2 0 85.7%
QS3 5 29 3 78.4% QS3 4 15 6 60.0%
QS4 0 5 18 78.3% QS4 1 1 4 66.7%

Accuracy 82.22% Accuracy 68.89%

Linear SVM
True Response True Response

Training Summary Testing Summary
Model QS1 QS3 QS4 P(T = x |M = x) Model QS1 QS3 QS4 P(T = x |M = x)
QS1 23 4 2 79.3% QS1 12 4 0 75.0%
QS3 6 29 6 70.7% QS3 3 12 6 57.1%
QS4 3 6 14 60.9% QS4 2 2 4 50.0%

Accuracy 73.33% Accuracy 62.22%

Second-order POLY SVM
True Response True Response

Training Summary Testing Summary
Model QS1 QS3 QS4 P(T = x |M = x) Model QS1 QS3 QS4 P(T = x |M = x)
QS1 31 1 0 96.9% QS1 13 3 1 76.5%
QS3 1 32 0 97.0% QS3 0 13 6 68.4%
QS4 0 3 22 88% QS4 4 2 3 33.3%

Accuracy 94.44% Accuracy 64.44%

LDA
True Response True Response

Training Summary Testing Summary
Model QS1 QS3 QS4 P(T = x |M = x) Model QS1 QS3 QS4 P(T = x |M = x)
QS1 25 4 2 80.6% QS1 12 3 1 75.0%
QS3 6 27 3 75.0% QS3 2 12 6 60.0%
QS4 1 5 17 73.9% QS4 3 3 3 33.3%

Accuracy 71.1% Accuracy 60.0%

QDA
True Response True Response

Training Summary Testing Summary
Model QS1 QS3 QS4 P(T = x |M = x) Model QS1 QS3 QS4 P(T = x |M = x)
QS1 32 4 0 88.9% QS1 12 3 1 75.0%
QS3 0 28 0 100.0% QS2 1 13 6 65.0%
QS4 0 4 22 84.6% QS3 3 2 3 37.5%

Accuracy 86.7% Accuracy 62.2%

decision (QS3), responders appeared to differentiate less clearly as a whole; hence
all models were equally less informative.

In Table 5, we depict the contribution of each model in making a correct to
incorrect classification prediction in terms of a likelihood ratio (λ), given below:

λ = P (M = x|T = x)
P (M = x|T �= x)
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Table 5: Contribution of models in correct classification prediction.

Likelihood ratio λ = P (M=x|T=x)
P (M=x|T c=x)

x = 1 (QS1) x = 3 (QS3) x = 4 (QS4)
MLSVM 9.9 2.3 7.0
SLSVM 4.9 2.0 3.5
SPSVM 10.7 3.3 1.8
LDA 4.9 2.3 1.8
QDA 4.9 2.8 1.6

where

P (M = x|T = x) ≡ probability model predicts response
x given true response is x,

P (M = x|T �= x) ≡ probability model predicts response
x given true response is not x.

With respect to predicting QS3, all models exhibited essentially comparable
informativeness. MLSVM and SPSVM however were much more informative in
predicting QS1. Moreover, MLSVM was much more informative in predicting
QS4 than all other methods. The QS4 decision was the most difficult to predict
because it is possible that the severity of the response made the responders more
reticent and unsure of themselves in making such an extreme choice. In addition,
the number of QS4 decisions in the training set (22) was considerably less than
those of QS1 (32) and QS3 (36), and classifiers generally tend to bias in favor of
the majority classes (QS1 and QS3) rather than the minority class (QS4).

In sum, our MLSVM algorithm was superior to all other available methods
in predicting responders’ choices—indicating the high potential value of MLSVM
based real-time decision support tools. Although data limitation precluded us from
doing so because of overfitting issues, further improvement of our approach may
be possible by employing a multistage polynomial SVM, which could provide
even better classification prediction accuracies.

MANAGERIAL INSIGHTS AND CONCLUDING COMMENTS

Since the 1990s we have seen the explosive growth of the use of IT tomakemassive
amounts of data available for processing by an organization’s decisionmakers. This
growth in the application and use of IT spawned such improvements as Six Sigma,
which was an effort to apply scientific and quantitative discipline and methodology
(such as statistics) to manage and control processes more efficiently and effectively
than via ad hoc decision making. This movement has been successful, but at a high
cost in training and sustainability. Part of this effort centered on training humans
to be good modelers and disciplined decision makers by exploiting the massive
amounts of data made available by IT—a challenge indeed!
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IT plays a key role in supporting and facilitating rapid response multi-
organizational collaborative decision making via real-time modeling and infor-
mation sharing by providing new tools to support group decision making. Such
tools allow dispersed and eclectic decisionmakers to address multiple strategic and
tactical problems. Testing and evaluation of these tools in simulated environments
(such as we have done in this study) provides an initial platform and opportunity to
assess their value under such conditions (Harrison, Lin, Carroll, & Carley, 2007;
Chaturvedi et al., in press). As machine learning algorithms such as SVMs mature,
modeling could be done automatically by machines with minimal human inter-
vention. Such a modeling approach has several key advantages. First, the process
owner is largely removed from the modeling task, resulting in unbiased model
identification. Second, automated modeling saves time and improves information
sharing among decision entities, which is particularly crucial in rapid response
situations. This automation also removes the bias of what is being done versus
what is being articulated by the decision makers.

In this article, we explored SVMs, which given the dynamic nature of incom-
ing data, have the capability to dynamically model and analyze decision processes
to support real-time decision making. Although SVMs have achieved good predic-
tive and explanatory power in general management applications (Chi et al., 2007a)
they had not been applied or tested in rapid response multi-organizational collabo-
rative decision-making contexts. Therefore, a central objective of this study was to
use a design science approach (e.g., Hevner et al., 2004; Holmstrom et al., 2009)
to explore the viability and effectiveness of using automated SVMs for real-time
decision support tools.

We explored the ability of SVMs to model, explain, and anticipate multi-
organizational decision-making behavior and responses with data from an exercise
involving a high-magnitude crisis situation. We utilized an intelligent agent-based
simulation environment to generate the data to train and test our solution approach,
and then used SVMs tomodel and examine collaborative response strategies.When
dealing with human behaviors, particularly in a multi-echelon decision-making
situation, standard single stage SVMs did not adequately capture behaviors within
and across organizational settings. To overcome this deficiency, we employed
SVM to model, understand, and anticipate multi-agency response strategies to a
high-magnitude crisis situation. In the exercise, decisionmakers exhibited different
patterns of behavior requiring the development, application, and evaluation of a
sequentialMLSVMalgorithm that permitted partitioning decisionmaker responses
into behavioral subsets. We then used these subsets to individually model and
examine the diverse patterns of response behavior with a MLSVM algorithm that
sequentially permitted modeling of different patterns of behavior among decision
makers within and across organizations and levels.

The use of SVMs in the physical and physiological sciences is rapidly in-
creasing in popularity. This research note assesses and extends their use and value
in the decision and management sciences by deploying the algorithm as part of a
DSS to support real-time multi-organizational, collaborative decision making in
a crisis situation. Part of this study involved modeling decision-making behavior,
which is a novel approach. Our results show that the MLSVM we developed is
clearly superior to single stage SVMs in anticipating and understanding behavior
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because one model does not fit all patterns of behaviors. Such machine learning
algorithms show promise as tools that can be used in rapidly evolving crisis sit-
uations to quickly assess response strategy behavior and provide the capability
to share information with decision makers in a multi-organizational collaborative
environment, thus lending to more effective decisions. Our results indicate that
there is considerable promise in applying SVMs to improve and optimize multi-
organizational, collaborative decision making in particular, and decision making
in general through rapid modeling in data-rich environments. We envision that the
use of SVMs to support IT-based DSS will grow as the management community
learns more about such machine learning tools.

The contributions of this research note include a validation of the effective-
ness of SVMs as an automated generic IT–based decision support tool to model
and improve the effectiveness of multi-organizational, collaborative decision mak-
ing in high-magnitude crisis situations. Further, the anticipatory and explanatory
effectiveness of our MLSVM algorithm indicates that it would effectively cap-
ture different patterns of behavior across decision makers in such an environment.
Thus, given that it is technically feasible to automate an MLSVM so that it could
dynamically model real-time behavior and share this information, we feel it is
likely that there is promise that this type of algorithm could form the core of a set
of IT-based DSS tools to provide real time, rapid, coordinated decision support.
We hope this note will serve to motivate further research on such IT-based decision
support tools as well as to improve decision-making effectiveness in practice.
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APPENDIX A: HIGH-MAGNITUDE CRISIS DECISION MODEL
DEVELOPMENT

Machine learning algorithms are a subset of data-mining tools. They include ar-
tificial neural networks, decision trees, and more recently, SVM. Prior research
has successfully applied SVM with excellent results in many different areas, but
to the best of our knowledge none have been applied to modeling behavior in
general and decision-making response strategies for crisis response in particular.
In the simulation experiment in our case, although participants could observe the
overall impacts of the decisions made following each decision-making round, they
did not receive any information regarding the decisions made or the factors and
variables used to make the decisions (model) by participants from the other var-
ious governmental levels and agencies. We focused on developing and applying
an MLSVM algorithm to model and predict what decision makers in organiza-
tions would do in response to a simulated high-magnitude crisis. Intuitively, we
expected that the underlying behavioral model-structure would be a mixture of
response sub-patterns because: (i) different people within and across agencies may
focus on different decision-making criteria, in part, contingent on the degree of
coordination and communication occurring; (ii) even the same individual may use
different decision-making criteria under different circumstances and they have dif-
ferent decision-making capabilities and training. Contrary to single stage models,
which generally yield one aggregate model of response behavior, the purpose of
MLSVM is to identify and model any mixture of behavioral sub-patterns that exist
in the dataset.

Conceptually, multistage SVMs extend the original single stage SVM al-
gorithm to a multistage structure. The original SVM is a margin-based learning
algorithm. During construction, the algorithm automatically selects a subset of
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samples, known as support vectors, and builds the decision boundary with maxi-
mum margin and minimum training errors based on them. The distance between
the response of a sample and the decision boundaries induced by a SVM model
measures the confidence of the model in predicting the sample response. Namely,
misclassifications are more likely for the samples whose responses are closer to
the decision boundaries than are those that are farther away. Furthermore, the set of
samples that are well represented or approximated by a given SVM model should
share a similar underlying model-structure. Thus, using the sample-margin infor-
mation, we select the subset of samples that are homogeneous for the underlying
model-structure and we can “train” a SVMmodel, based on this “sanitized” subset,
to better capture the common underlying model-structure of the subset. We can
iterate the process on the remaining samples until no further partition is necessary.
Upon termination, we obtain an aggregation of sub-models, which provides insight
into the sub-patterns in the dataset. The multistage SVM algorithm does not have
restrictions on the type of SVM models used per se, although models with a more
simple parametric form are preferred. In the remainder of this appendix we discuss
the training and testing procedures of the model.

Model Training Procedure

The training procedure for the high magnitude, crisis response decision model is
as follows:

In step 1: Set k= 1 for the first stage. Let S(0) represent the entire dataset, and
S(k – 1) the subset forwarded from the previous stage; namely, the rejected subset
at the (k – 1)th stage. In step 2: Train a first linear SVMmodel based on S(k – 1) for
the kth stage. Partition S(k – 1) into two parts based on the ±1SVM margin. The

Figure A1: Internal structure of multistage SVM.
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points falling outside this region are the accepted subset, and the points inside the
rejection region are the rejected subset. Then we train a second linear SVMmodel
on the accepted subset and save it as the appropriate model for that stage. In step 3:
Check the termination conditions. If either of the two conditions are satisfied, then
stop; otherwise, let k = k + 1, S(k) be the rejected subset of samples and proceed
to step 2.

Model Testing Procedure

The testing procedure for the high magnitude crisis response decision model is as
follows:

In step 1: Set k = 1 for the first stage and let fk(x) represent the first linear
SVM model and gk(x) represent the second linear SVM model for the kth stage.
In step 2: Calculate the value of fk(x) for the testing sample; if the value is outside
the rejection region, then interpret gk(x) as the final classification label and stop.
If the value falls within the rejection region, then let k = k + 1 and do step 2
again. We provide an overview of the internal structure of our multistage SVM in
Figure A1.
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