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Abstract

Purpose — This paper aims to contribute to the tactical and operational decision making of
manufacturing and logistics operations by providing novel insights into modelling and simulation,
based on complex adaptive systems (CAS).

Design/methodology/approach — The research approach is theoretically based on CAS with
agent-based modelling (ABM) as the implementation method. A case study is presented where an
agent-based model has contributed to increased understanding and precision in decision making at a
packaging company in the UK.

Findings — The results suggest that ABM provides decision-makers with robust and accurate
“what-if” scenarios of the dynamic interplay among several business functions. These scenarios can
guide managers in the process of moving from policy space to performance space, i.e. concerning
priorities of improvement efforts and choices of production/manufacturing policies, warehouse
policies, customer service policies and logistics policies. Furthermore, it is found that ABM can include
and pay attention to several aspects of CAS and thus provide understanding of, and explanation for,
the patterns and effects which emerge in manufacturing and logistics settings.

Practical implications — Aided by agent-based models and simulations, practitioners’ levels of
intuition can be enhanced since patterns on the macro level emerge from agents’ interactive behaviour.
Together with insights from CAS these emergent patterns can be explained and understood, and are
thus beneficial for the improvement of decision making in companies.

Originality/value — The case presented distinguishes this paper from what has been written in
previous articles on the application of ABM, since such articles have not produced any empirically
verified results after implementation of ABM.
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Introduction

In an increasingly complex world, managers are confronted with more data and
information, which means they need to be able to consider holistic perspectives as
specific details in their decision-making processes. Thus, the search for models and
methods which assist managers in the process of decision-making is never-ending for
all types of management, and is also the case in manufacturing and logistics
(Schroeder, 1993; Svensson, 2003). Owing to just-in-time implementations and other
lean approaches, the focus on lowering inventory levels in several cases has led to
increased vulnerability in terms of disturbances in operational activities (Svensson,
2003). With emerging business concepts, such as agile manufacturing and responsive
logistics, the ability to react, and even be proactive, to changing demands and
disruptions, will be increasingly important (Brown and Bessant, 2003; Gerwin, 1993).
In the development towards agile and responsive enterprises, novel approaches and
methods which can assist managers in manufacturing and logistics in the
decision-making process are needed.

Even though several models and methods exist to support managers in the
decision-making process within the manufacturing and logistics disciplines, their
usability needs to be investigated as it depends on situation and context. There are, for
example, several reports of successful modelling efforts regarding specific functions or
processes, e.g. inventory, productlon transport (Axsiter, 2003; Campbell and Hardin,
2005). However, what seem to be missing in the managers’ toolboxes are methods and
tools when models need to include several company functions or processes which are
interconnected and interdependent. In their analysis of business process modelling and
simulation, Barber ef al. (2003) conclude that existing software tools are still limited in
breadth and depth. When business processes involving manufacturing, logistics,
operations planning, sales, inventory, etc. are considered simultaneously, the
complexity of the situation increases. In such wider contexts, over-simplified models
often fall short since they are based on assumptions which scarcely reflect reality. As
Leombruni and Richiardi (2005, p. 104) state “the traditional approach of simplifying
[complex systems] may often ‘throw the baby out with the water’”. The fact is that
there are several simplifying assumptions which are being taken for granted in many
existing models and methods and these do not exist in real-life contexts. For example,
Vidal and Goetschalckx (2000) describe assumptions in mathematical programming
(MP) and mathematical integer programming when these methods are applied to
logistics and supply chain management:

+ customer demand satisfaction is included in most MP formulations by assuming
deterministic demand;

+ transport and production costs are assumed to be linear for most of the
formulations; and

+ the calculation of inventory costs in distribution centres, if included at all,
usually assumes deterministic demands and deterministic lead times.

The patterns and behaviours which can be identified in manufacturing and logistics
contexts do not match such assumptions. Rather, they can be regarded as being of a
complex and adaptive character based on perceptions of ongoing events in the local
context (Nilsson, 2005). Complex adaptive systems (CAS) are by definition difficult,
and often impossible, to compress into parsimonious descriptions or simplifications



(Anderson, 1999) since they are characterised by self-organising properties causing
emergent system-wide effects (Darley, 1999; Gell-Mann, 1994; Holland, 1998;
Kauffman, 1995). CAS are better described and understood by assumptions of
non-linearity, self-organisation, change, heterogeneity, bounded rationality and
emergence. In other words, if manufacturing and logistics operations are regarded
as being complex, it is inappropriate to consider models developed under paradigms
based on beliefs of linearity, stability, homogeneity, and perfect rationality as
producing the best possible explanations and understanding of turbulent contexts.

With the use of agent-based modelling (ABM) and simulation, together with
insights derived from complex adaptive systems, this paper illustrates that ABM
provides a suitable platform for the creation of robust and accurate “what-if” scenarios
within manufacturing and logistics settings. This approach can, in turn, be used to
improve the tactical and operational decision-making of manufacturing and logistics
operations. The applicability and value of ABM are illustrated in this paper by a case
and simulation study from a packaging company in the UK where an agent-based
model has been developed and used at the company. The case distinguishes this paper
from what has been written in previous articles on the application of ABM since these
articles have not shown any empirically verified results after implementation of ABM.

The remainder of this paper is organised as follows. The next section provides an
introductory description of CAS. ABM is then introduced as a method and technique to
operationalise the CAS perspective in manufacturing and logistics. In the subsequent
section, a case is described which illustrates the application of ABM at a packaging
company in the UK, showing insights into how CAS and ABM can be applied to
improve decision-making. Finally, a concluding discussion of ABM is provided and
further research suggested.

Complex adaptive systems

The complexity paradigm is a new approach and a useful perspective for
understanding manufacturing and logistics phenomena (Choi et al, 2001; McCarthy,
2004). Recent research has shown that phenomena consisting of many constraints and
conflicting demands, i.e. complex systems, can be studied and evaluated by models and
methods derived from a complexity perspective (Nilsson, 2003). Insights from the
complexity paradigm have been reported before (see, for example, MacIntosh and
MacLean’s (2001) work on conditioned emergence, MacBeth’s (2002) work on emergent
strategy and McCarthy’s (2004) work on manufacturing strategy). The complexity
paradigm has been used to facilitate understanding of other phenomena such as
knowledge management (McElroy, 2000; Stacey, 2001), organisation science
(Anderson, 1999; Lewin, 1999; Lewin and Regine, 1999), strategy (Beinhocker, 1999;
Pascale et al., 2000; Tasaka, 1999), to mention but a few. MacIntosh and MacLean
(2001, p. 1345) state that “complexity theory ... is regarded by some as signalling the
arrival of a new scientific paradigm in the Kuhnian sense”.

A complex adaptive system is a special kind of complex system since it has the
property of adaptation, meaning that it has the “ability to consciously alter its system
configuration and influence its current and future survival” (McCarthy, 2003 p. 730). In
a manufacturing and logistics context this means that the entities in the system are
responsive, flexible, reactive and often deliberately proactive to inputs from other

Agent-based
modelling

1353




JOPM

26,12

1354

entities which affect them. In the subsequent discussion, we will present and discuss
four properties which characterise CAS:

(1) CAS is represented by open dynamic systems which continually exchange
information and energy with the surrounding environment (Beinhocker, 1997,
Gell-Mann, 1994).

(2) A CAS consists of several agents which dynamically act in correlation and
interdependence with each other (Bar-Yam, 1997). The agents act according to
certain policies which influence their behaviour and at the same time, that of the
other agents, creating non-linearity in the system (Beinhocker, 1997; Pascale,
1999; Stacey et al., 2000).

(3) The type of systems which CAS represents has a common feature; the systems
exhibit emergence (Beinhocker, 1997; Choi et al., 2001; Stacey, 2000). Emergence
could be described as the outcome of collective behaviour, ie. interactions
among agents (elements, individuals, etc.) performing something individually,
or together, which creates some kind of pattern or behaviour which the agents
themselves cannot produce (Bar-Yam, 1997; Gell-Mann, 1994; Goodwin, 2000;
Kauffman, 1995; Lissack, 1999). Epstein (1999, p. 54) gives an illustrative
example of emergent properties; “people can have happy memories of childhood
while, presumably, individual neurons cannot”. This means that the behaviour
of a CAS is unpredictable and often counter-intuitive (Bonabeau, 2002) and
contributes to a co-evolutionary process among the agents. It also means that
new opportunities are always being created by the system. Moreover, as
Bonabeau (2002) claims, the only way to analyse and understand emergent
phenomena is to model them from the bottom up.

(4) It is through interaction between the entities that emergence occurs in the
process of self-organisation. This process of self-organisation can only be
successful in open systems because of the need for energy (Prigogine, 1997).
However, even though CAS never reach states of equilibrium, order still
emerges. Anderson (1999) describes this as “order arises in complex adaptive
systems because their components are partially, not fully, connected”. Systems
in which every element is connected to each other in a feedback loop are
hopelessly unstable (Simon, 2002).

When the scope of business issues is widened, the characteristics of business processes
and phenomena become increasingly non-linear, self-organising, changing and
rationally bounded. This happens when the interplay among different business
functions and processes is to be considered and even more apparent when customers as
well as suppliers are to be included in the analysis and understanding. Hence, the
characteristics of CAS become evident in a business context. As Sutherland and van
den Heuvel (2002 p. 3) state: “business entities are good examples of complex adaptive
systems”.

However, while insights from CAS provide increased understanding of
manufacturing and logistics processes and a helpful framework for modelling, some
kind of method is needed in order to transform such an approach into tangible and
understandable results, particularly from a management perspective. The rationale
behind such a method is that our research has brought out that managers need to be



able to test and evaluate different “what-1f” scenarios, simulate policy changes or
changes in behaviour in order for them to understand and evaluate new ways of
thinking and approaches to manufacturing and logistics issues. In this regard, one
modelling and simulation approach influenced by the complexity paradigm is ABM,
derived partly from object-oriented programming and distributed artificial intelligence
(Jennings et al, 1998), and partly from insights from the science of complexity
(Axelrod, 1997b; Holland, 1998; Kauffman, 1995). ABM provides a modelling and
simulation approach which can be beneficial for a complex adaptive system approach
and is useful in creating tangible, understandable results for managers.

Agent-based modelling

ABM represents a new paradigm in modelling and simulation of dynamic systems
distributed in time and space (Jennings et al., 1998; Lim and Zhang, 2003) and ABM
“allows the use of CAS approaches [...] that can address the behaviour of each of the
participants within complex systems” (North et al, 2005, p. 1197). Since manufacturing
and logistics operations are characterised by distributed activities as well as
decision-making, in both time and in space, and can be regarded as complex, the ABM
approach is highly appropriate for these types of systems (Lim and Zhang, 2003;
Nilsson, 2005; Wakeland et al., 2004). There is a growing interest in using ABM in
several business-related areas, such as manufacturing (Chun ef al., 2003; Kotak et al,
2003; Lim and Zhang, 2003; Zhou et al, 2003) and logistics and supply chain
management (Gerber et al.,, 2003; Kaihara, 2003; Knirsch and Timm, 1999; Santos ef al,
2003; Schieritz and Grossler, 2003). ABM is considered important for developing
industrial systems (Davidsson and Wernstedt, 2002; Fox et al., 2000; Karageorgos et al.,
2003) and it provides a pragmatic approach for the evaluation of management
alternatives (Swaminathan et al, 1998).

In ABM the focus is on agents and their relationships with other agents or entities
(Axelrod, 1997a; Cicirello and Smith, 2004; d'Inverno and Luck, 2001; Jennings et al.,
1998). Since the field of ABM is fairly new, no general agreement on the term agent has
yet been established (Tripathi et al, 2005). Parunak ef al. (1998) define an agent as
being a software entity with its own thread of control able to execute operations
without being externally invoked, while Jennings et al. (1998) define an agent as a
self-contained, problem-solving entity. In this paper the agents are defined as real-life
components identified in the context of interest, characterised with varying degrees of
autonomy (i.e. execution ability and self-control), and characteristics based on policies,
behaviours, states and constraints. In the manufacturing and logistics context an agent
might represent a machine, the order-handling process, inventory handling, trucks,
etc.; parts of manufacturing and logistics operations which to some degree are
autonomous.

The bottom-up approach

A central feature of ABM is the bottom-up methodology by which an ABM model is
constructed. Reaidy et al (2003) provide a comparison of conventional
top-down-oriented methodologies and agent-based bottom-up ones (Figure 1). The
top-down methodologies are based on the assumption that knowledge is outside the
“system” and someone can measure and analyse the observable phenomenon of
interest and from that decompose it correctly to different sub-units where the
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sub-problems are solved separately. Then, as Kreipl and Pinedo (2004, p. 83) state, “at
the end, the partial solutions are put together in a single overall solution”. While this
“divide and conquer” approach enables manufacturing and logistics operations to
be translated into mathematical equations for correct analytic solutions, it
de-emphasises the relationships and dynamics which in reality exist among different
manufacturing and logistics entities (Parunak ef al, 1998). This is especially the case
when the targeted modelling context is widened to include several dispersed functions
or processes within a company. Models which are constructed by global performance
measures (also called observables (Parunak et al, 1998)), cannot cope with the
dynamics of their constituent parts, since the observables are constructed of
the aggregated behaviours of the whole system (Swaminathan ef al, 1998).
Paradigmatically, this top-down assumption is inherited from the positivistic
paradigm, hence built on mechanistic assumptions and reductionism. In this regard,
Kauffman (1995, p. VII) states that “the past three centuries of science have been
predominantly reductionist, attempting to break complex systems into simple parts,
and those parts, in turn, into simpler parts”.

Bottom-up methodologies are instead based on a synthesising philosophy,
where the user presumes that he/she cannot understand the whole phenomenon of
Interest but can observe, on a micro level, specific activities and processes, and
tries to understand their behaviour and their objectives. These agents interact and
communicate with other agents and they join to form a coherent whole on a macro
level (d'Inverno and Luck, 2001). Each agent’s ability to make decisions based on
information-processing rules creates the internal dynamics which form the
behaviour of the system; often emergent behaviours which cannot be predicted
in advance (Axelrod, 1997a). In this regard, Bonabeau (2002, p. 110) states that in
order to understand ABM “you first need to understand the concept of emergent



phenomena”. Emergent phenomena are fundamental in complex adaptive systems.
Global patterns emerge from the interacting and interrelated networks of agents.
In the words of Parunak ef al (1998, p. 10) “direct relationships among the
observables are an output of the process, not its input”. Jennings ef al. (1998, p. 9)
state that ABMs “are ideally suited to representing problems that have multiple
problem solving methods, multiple perspectives and/or multiple problem solving
entities”. The motivation for this is based on the fact that the agents interactively
negotiate different goals, and co-operate and/or even compete in order to reach
emergent solutions that solve the problem in question. Jennings ef al (1998, p. 9)
state that:

... it is the flexibility and high-level nature of these interactions (cooperation, coordination,
negotiation) which distinguishes multi-agent systems from other forms of software and
which provides the underlying power of the paradigm.

In pragmatic research, with empirical bounding, a bottom-up approach might seem to
be advantageous, since the quest for the researcher or practitioner developing the
model will entail directly assessing activities, machines, and operations on their most
concrete level. This means that when it comes to modelling and simulation there is no
need to consider the whole phenomenon at once. Instead, it should be constructed and
developed in the process of building the model. Focus can therefore be placed on the
local and distributed parts since they may have their own working principles,
behaviours, states, and constraints, i.e. natural heterogeneity. Furthermore, with the
use of simulations, emergent behaviour can often be identified and understood, and
sometimes even predicted (Darley, 1999).

Agents vs objects

It might seem to the reader that agents and objects are similar in nature, however, there
are differences in both their construction and execution. Jennings et al. (1998) provide a
number of differences between them. The first relates to autonomy, where an agent
embodies a stronger notion of autonomy than objects (Wooldridge, 2002). Jennings ef al.
(1998) explain autonomy as “objects do it for free; agents do it for money”. Another
distinction between object and agent systems is with respect to the notion of flexible,
(reactive, pro-active, social) autonomous behaviour. In general, objects are passive, i.e.
they need to receive a message or something similar in order to become active; agents
have their internal mechanism for that (Jennings and Bussmann, 2003). A third
distinction lies on the model level, where the agents in agent-based models are each
considered to have their own thread of control whereas in the standard object model,
there is a single thread of control (Jennings et al., 1998).

While ABM shares several of the characteristics of other types of bottom-up
modelling and simulation methodologies (e.g. discrete-event based (DES)), ie. it
represents dynamic, stochastic and discrete settings, there are some differences that
could be reflected on. Firstly, the execution of the agents is based on internal rules not
on external and global policies. Secondly, the focus is on the agent and its adaptiveness
within the system being studied (Garcia, 2005). As stated by Garcia (2005, p. 381) “in an
agent-based model, the programmer only models the behaviour of an individual”.
Finally, compared to event-driven DES models, agent-based models are mostly time
driven.
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Identified advantages

Increases realism (Jennings et al., 1998). In ABM the parameters are set to characterise
an authentic situation of interest (Bonabeau, 2002). The individual agents can be made
directly comparable to machines, vehicles, products or groups of such, found in a
real-life context which easily facilitates validation of simulation runs. This makes the
models easy to understand for the people involved and there is no requirement for them
to understand ABM (Valluri and Croson, 2003) which makes ABM a powerful
empirical method (Epstein, 1999).

Includes heterogeneity. In ABM there is no need to aggregate different agents’
behaviour into average variables. In reality, manufacturing and logistics activities are
not homogeneous at the operational level, which makes ABM a powerful tool for
including the heterogeneity in these systems. The results often provide novel insights
which are sometimes counter-intuitive (Bonabeau, 2002).

Includes bounded rationality. As is often the case in organisations, the individuals
mvolved lack perfect information, have their own goals, and sometimes their own
policies, 1.e. they are heterogeneous and have bounded rationality. Valluri and Croson
(2003, p. 3) state that in agent-based models “bounded rationality can be built explicitly
into agent design rather than either imprecisely modelled or assumed away entirely”.
The agents do not possess global information, and they do not have infinite
computational power (Epstein, 1999).

Promotes scalability and flexibility (Tripathi et al., 2005). In the development of the
models the agents can be developed separately and systems can be built up in several
stages until the system one wishes to investigate is covered. Adding another
sub-system, i.e. an agent or a set of agents, is fairly easy.

Low costs. Another pragmatic advantage is represented by the low financial costs
associated with ABM compared to the costs of other modelling and simulation tools
like discrete-event simulation (DES). The latter require licence agreements which are
often a significant expense. The ABM software needed is based on open source which
can be downloaded free of charge. Examples are JAVA, JADE, Repast, Swarm,
Netlogo, Starlogo.

Identified disadvantages

As there will never be any one method or tool without flaws or the best to use in all
cases, ABM has its drawbacks. One drawback is that, due to the finer granularity of
information, there are relatively high costs in both time and effort compared to
equation-based models (Swaminathan et al., 1998). Furthermore, ABM models tend to
require more data than many other approaches (Bonabeau, 2002; Garcia, 2005). As a
consequence, of the finer granularity and the great amount of data it is often extremely
difficult to detect whether the results produced are the cause of a programming error or
a groundbreaking insight. Hence, troubleshooting activities can sometimes be very
resource demanding. In addition, simulating agent-based models demands knowledge
of programming languages (Garcia, 2005). Another disadvantage is that customised
models are often specific to the modelled context and therefore have limited re-use
(Swaminathan et al, 1998) so that the generalisability of the results is difficult
(Leombruni and Richiardi, 2005, p. 104). One way to overcome this though is by
making theoretical or assumptive generalisations (Meredith, 1998; Yin, 2003). One
should bear in mind that benefiting the most from ABM means understanding the



characteristics of the phenomena under investigation at the lowest appropriate level of
description. Furthermore, in the context of manufacturing and logistics, the models
need to be updated on a regular basis with policies, rules, states and other types of data
in order to provide enough similarities with the modelled reality to be valuable and
useful. This may be a costly step. Finally, as in any modelling and simulation effort, it
is important to establish that an agent-based model will only be as accurate as the
assumptions and data which went into it. Stacey et @l (2000) particularly address the
issue of transferring human behaviour to rules and procedures in a computer and point
out that the rich texture of emotional and embodied relating to each other is lost, as is
any creative action. In addition, Richardson (2003, p. 8) issues a word of warning that
“models are tools that can be used and abused — the best models are worthless in linear
hands”. A final comment is that it must be noted that ABM and other methods and
tools are complements to each other, not rivals.

The packaging company case description

In the following section, a case study which illustrates and exemplifies the use of ABM
in an industrial context will be provided. For reasons of brevity and confidentiality,
some details have been left out, and focus has instead been placed on the explanation of
the modelling context, and the result of the simulation model which has been
developed. Consequently, the actual figures presented have been modified.

The case is based on a simulation of a packaging company in the UK where a CAS
perspective was used on a plant and its customer relations. The packaging company
was facing increased turbulence since customer demands were changing rapidly, at the
same time as the costs (particularly warehousing costs) of keeping high service levels
were increasing. Furthermore, there was no genuine understanding of the relationships
between customer order patterns, factory capacity, factory flexibility, production
robustness, machine speeds, set-up times, order batching, warehouse size and on-time
deliveries. What the managers in the plant were looking for was a “virtual factory” to
test the impacts different policy changes would have on their customer service levels,
on their internal logistics, on production and related costs. The key strategy of the
company, as described by the plant manager, was one which he and other colleagues
believe has made the packaging firm market leader in the northern parts of the UK; to
offer the best customer service possible. This differentiation strategy meant that the
firm had to be flexible in production, inventory stocking and deliveries to its
customers, and most importantly of all, had to give the customers consistency in
delivering high-quality products, on time and in full. Offering the customers this high
service without the assessment methods for finding the optimal balance, where both
the customers’ demands and the company’s profitability were considered and
maximised, made the evaluation of the strategy in this challenging situation difficult.
The customer service strategy of the packaging company was not, under any
circumstances, to be changed since it had set the company apart for several years,
making it profitable.

In order to gain insights concerning the different problems and requirements the
managers in the company brought up, a CAS perspective was used, and an
agent-based model was developed. In this case there were several reasons for this
combination:
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+ The situation was characterised by several different entities which had access to
limited information and which had varying degrees of influence on company
operations, i.e. heterogeneity and bounded rationality existed.

+ Parallel activities were taking place and decisions were made by several people
in different parts of the company, ie. discrete activities and decentralised
decision-making were evident.

+ The situation was resource-constrained, i.e. there were limited resources in terms
of money, space and time.

« Different performance measurements were used in different parts of the
company, which on a company level were in conflict, since some of these
constrained each other. In other words, no global target function was to be found
and instead, the model needed to incorporate different measurements and aims.

Thus, the situation was characterised by conditions and characteristics similar to what
can be defined as a complex adaptive system. Furthermore, in this specific case the
packaging company had particular requirements for the modelling process:

* The company wanted a customised model, similar to its operations, i.e. not a
general model derived from common computer programs. In this regard, it was
easier to build a model which fitted into the company’s operations than to tailor
the company’s operations to an existing model.

* The company wanted a flexible and scalable model which could be easily
extended to other functionalities and entities later.

This led to the development of an agent-based model which would represent a virtual
factory. This would in turn aid the managers in their decision-making processes.

Agent-based modelling of the packaging company
The project was separated into three phases where the initial phase covered ten
interviews and two workshops with staff and involved process mapping of flows and
interactions, in order to create the “virtual factory” requested. In this phase, a great
deal of time was spent on identifying the type of data that was available and
establishing how it could be used. The managers and others involved had considerable
experience of running the plant and this made them very suited to providing input to
the model and evaluating outcomes from the model. Several of them had been working
there for more than 15 years and were useful sources of information. As a final part of
the first phase, a preliminary model was built to cover the major features of the plant.

The second phase covered the development of a more detailed model, and involved
its calibration. The model could be developed based on real data from 2001 due to the
accurate data provided by the packaging company. A total of approximately 20,000
orders was put into the model and the number of products used was close to 2,500. The
plant had a total of more than 100 different customers. There was no need to average or
simplify any of these orders, products or customers since each entity was included and
considered in the model.

After verification and validation the third phase involved the actual modelling and
simulation of different scenarios. One of these simulations aided the management in



deciding how to handle a particular situation which arose during the second Agent-based
development phase. The result of this simulation will be presented below. modelling

The agents

The agents identified ranged from orders, machinery and shift plans to

decision-making rules. In order to identify appropriate agents, process maps were 1361
made of the flow through the factory; both the physical flow and the order/information

flow (see Figures 2 and 3 for process maps for order and physical flows).

Agents were identified in the plant based on their impact on the value-adding
process. The agents were created based on the recognisable characteristics for each
identified agent, i.e. the policies, the behaviours, the constraints and their states.

Plant agent = (agentid, policies, behaviours, constraints, states)

The following major agents were identified and incorporated into the model:

* machines (nine in total);

+ sales;

+ operations planning;
+ warehouse; and

* customers.

The agents themselves are fairly simple in design, i.e. they are represented by fairly
simple mathematical representations and logical “if-then” rules. The complexity
matching the reality to be modelled is found in the emergent outcome as these agents
interact during simulation runs.

Product order

Stock replenishment
Warehouse order
call-off
/ Warehouse
Sales =
Customer =
B Bavel b % % Figure 2
. ; Process map of order flow
Product:j on / Production at the plant
order

Machine 3 “

Machine 4
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physical flow at the plant
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Machine agent. Each machine in the production was considered an agent since its
characteristics were significant to the value-adding process. The machines have
capacity constraints, e.g. maximum operating speed, and operational behaviours, e.g.
mean time between failure rates, mean set-up times, etc. Furthermore, as the model
runs, the states of the machines change, e.g. they are occupied, damaged, available, etc.
All nine machines were included in the model and modelled as autonomous but
interconnected agents.

Sales agent. Within the sales department another value-adding process identified
was the incoming order handling process which was regarded as the sales agent. The
order handling process had several policies. Dealing with incoming orders means first
of all checking if products are in stock or need to be produced, and whether a particular
customer is one served by keeping stock or by only “making to order”. This leads to
behaviours which in the former case, i.e. keeping stock, means that the warehouse
agent should be notified and in the latter case, 1.e. making to order, a production order
is created to provide the operations planning agent with up-to-date orders for
scheduling.

Operations planning agent. The operations planning agent’s behaviour is set to first
produce a rough plan and, based on late changes due to changes in orders or late
incoming but prioritised orders, a final production plan. Policies identified for the
operations planning were:

+ latest possible day;
+ earliest possible day; and
* minimum workload day.

The last policy (minimum workload day) was of a more complicated character since it
meant considering machine and man-hour utilisation. A final policy used was to
include the priority of certain customers in production scheduling. The operations
planning agent is constrained by the capacity of both the machines and the warehouse.
Only by interaction with these agents can the decisions concerning when to produce
and store an order be made. This planning happens each day.

Warehouse agent. The warehouse agent incorporates several aspects and policies
for keeping products in stock. The agent is limited by the capacity constraints
concerning the number of products which can be stored. Furthermore, there are
important aspects concerning the costs of storing and handling the products in stock
which affect the policies used. Two policies which it is possible to change are whether a
product should be a stock product or non-stock (make-to-order) product. Such a change
in policy affects the rest of the agents and consequently the performance of the whole
plant, i.e. in customer service terms.

Customer agent. There is a high level of unpredictability in customer behaviour, i.e.
when orders are set, which products are ordered, in what quantities, and when and
where the products should be delivered. The products themselves are characterised by
size, design/colour, quality, number of products per delivery, stock-keeping
agreements, lead time agreements. Another influential factor is the seasonality of
products some customers experience. Consequently, an agent is created in the model to
represent this highly variable set of characteristics from over a hundred customers.



Output

The output of the model was designed to mirror the service levels of the company, i.e.
to measure the effects different policy changes had on successful customer service
strategy. More explicitly, output parameters were missed dispatches, warehouse levels
in terms of pallets (stock and non-stock items), machine utilisation, number of
rearranged orders, number of renegotiated orders, storage costs and total costs.
Figure 4 shows the computer interface of a simulation run where the data for each
machine for each day of a year has been simulated and the results in terms of potential
missed dispatches and warehouse levels are graphically illustrated in the two
diagrams.

Each simulation run produces a dataset which can be viewed, analysed,
compared and saved for future use. This allows different runs with different
parameter settings to be compared directly, i.e. the runs can be compared on
warehouse levels, by cost, by service quality, by machine utilisation, depending on
the parameter settings. One way to analyse the result of simulation runs is in data
summary plots showing the various metrics on time scales ranging from daily
data to yearly averages.

Model verification and validation

The reliability of the model was crucial for the whole management team. Consequently,
it was a qualifying requirement that the model could reproduce what was going on in
the plant in a manner which was easy to understand. This meant that verification and
validation of the model were conducted on several occasions during the development
process. This was done by means of workshops with staff from the packaging
company where the previous year was modelled and compared to the real performance
in the factory. This calibration of the model was done through several parameters such
as actual warehouse levels, actual missed dispatches, hours worked on each machine,
etc. After some fine-tuning the model represented and showed the operations done
during 2001. The plant manager stated that:

... based on the fact that there are several experienced managers operating, and that their
business is quite stable, they have found it quite easy to check the reliability of the model
compared to the experience and the figures they have concerning the operations.

One of the advantages of ABM was realised here, namely, that model validation could
be done on both micro and macro levels, 1.e. each agent’s behaviour could be validated
and verified quantitatively, with real data, and qualitatively, through discussions of its
behaviour and policies. At the same time, macro behaviour, i.e. the behaviour of the
whole plant, could be validated and verified with real data representing service level
aspects and warehouse levels.

Editing the model and building scenarios

In order to provide the managers at the plant with a virtual factory the model was
designed to be easily edited, i.e. customers, products, machines, and other specific
parameters can be changed. For each run the customers can be changed, deleted or new
customers added. For example, it is possible to include errors in customer orders such
as day errors, i.e. predicted delivery date and actual delivery date of the final order, and
quantity errors, i.e. the percentage error in the quantity of the predicted order. For each
customer, specific products may also be changed. These changes can be choice of
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material, number of products per pallet, whether the products are stock or non-stock
products, concerning lead time requirements or withdrawal of some products. The
machines can be edited concerning set-up times, speed, associated costs and handling
costs. They can also be edited for specific parameters, which involve the use of initial
stock, ie. in order to start with correct historical levels. Furthermore, general
production policies can be edited, such as crash orders, 1.e. policies which allow orders
to be produced the same day as they are received (the normal policy is the following
day), and an extra speed factor, which means that a general increase of machine speed
is set. In addition, machine shifts can be changed based on a daily utilisation threshold
and a weekend utilisation threshold (i.e. a 5-day 3-shift and a 7-day 2-shift working
pattern). By default, the model automatically chooses the necessary number of shifts
based on the threshold of whether additional shifts are necessary for each and every
day. The shift decisions can also be specified manually. The running speed of the
model is quite fast - a simulation run over one year of production takes less than a
minute on a standard PC, making it possible to generate several scenarios in short
periods of time.

Based on the above-mentioned possible parameter changes, several scenarios can
be generated. The following section will present a specific scenario which took place
at the plant, and it will provide insights into how the model can be used. For this
specific scenario the actual outcome compared to the simulations made has been
evaluated.

The strategic challenge

At the end of the development phase, two major strategic challenges arose and the
model was also used to create accurate simulation scenarios for these challenges. Three
months prior to the actual decisions concerning the challenges were implemented a
simulation scenario was created. These two challenges were:

(1) The packaging company’s largest customer (customer A) was expanding its
business and this would significantly increase orders and thereby production.
The caveat here was that the current production at that time was close to its
maximum and there were different opinions within the firm as to whether it was
possible to add any more orders at this point. Any investment in additional
capacity was not possible in the foreseeable future and this placed extra
constraints on the company.

(2) The contracts with the packaging company’s second largest customer
(customer B) at that time were supposed to be renegotiated during the fourth
quarter of the year. The packaging firm was holding considerable amounts of
finished goods inventories (in fact more than for customer A), and there had
been a history of problems in the relationship with this customer concerning the
costs the flexibility these high inventory levels provided. The customer
demanded high levels of flexibility but was only willing to pay for it up to a
point. Some people in the organisation questioned the value of having this
customer; however, no-one knew the exact cost of the flexible service provided
or the consequences of turning the customer down. The obvious profit margins
on customer B were larger than on customer A, but these did not take into
account the costs of accommodating these customers.
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Figure 5.

Dataset summary plots
from simulation runs of
the two challenges facing
the company

Simulations of the strategic challenge
Based on the model, several scenarios were created and evaluated by management.
One of the scenarios tested was actually a combination of the two challenges; namely
increasing production for customer A, ie. by adding products and quantity, at the
same time as customer B was removed from the model. Using the model to support its
decision the company decided to turn down customer B since both intuition and results
of the model indicated that the flexibility provided for this customer was at too high a
cost. Moreover, the model was able to clearly show that, even though there would now
be more overall work, the factory could just handle the new situation — there would be
no negative impact on customer service levels. Consequently, a contract with customer
A with its planned increase of products could be agreed on without any major
investments in new capacity. This “what-if” scenario was simulated at the beginning of
the third quarter and the results of the simulation model for the fourth quarter
indicated that such a decision would have an impact on profitability. The model
estimated a reduction in warehouse levels of 35 per cent and a decline in missed
dispatches of 15 per cent, which would result in a total decrease in costs of £120,000.
These figures are shown in the data summary plots in Figure 5(a) and (b) below.
Allinall, this meant that, during the busiest month of the year, the company produced
10 per cent more compared to the same month the preceding year at the same time as its
costs were lowered by 13 per cent (Table I). Added to this was a decrease in distribution
and stock-keeping costs of almost 30 per cent. In total, this meant that the result for that
month was increased by more than £100,000 (Richardson, 2003, p. 8). While it is a fact
that some of these decisions concerning the customer and production changes would
have been made without the input from the model, several of the decision-makers
expressed their opinion that “the model provided us with understanding and indicators
of what could happen which made the decisions much easier to make”.

Case conclusions and discussion
While the model provided guidance for the managers in the change of customers
described above, the model was also able to create other “what-if” scenarios. For
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Note: The square in the right-hand corner shows the current situation and the square in the lower left-hand corner shows
the simulated result of turning down Customer B and increasing production for Customer A. The diagrams show missed
dispatches compared to, (1a) total cost in the left-hand diagram, and (1b) total warehouse levelsin the right-hand diagram



example, it has proved itself very useful in showing how to reduce finished stocks of
goods without compromising on-time, in-full delivery. Another result of the modelling
and simulation process was that managers started to examine, as the plant manager
expressed it, “sacred cows”. For example, one issue the management was interested in
ascertaining was the number of shifts that would be most beneficial for business.
Several scenarios were tested showing what impact different shift alternatives had on
inventory levels, missed dispatches and machine utilisation.

Conclusions and discussion

In this paper, novel insights into modelling and simulation improving the
decision-making process in manufacturing and logistics have been demonstrated.
These insights are theoretically based on CAS and applied through ABM and
simulation. It has been shown in this paper that the characteristics of CAS can be
modelled and simulated by ABM. Hence, the applicability of ABM is especially great
when phenomena of interest are:

+ dynamic systems distributed in time and space;

+ made up of many interacting and autonomous parts, 1.e. agents;

+ where several objectives and often conflicting constraints exist; and
* where emergent phenomena could be exhibited.

These characteristics are suitable for manufacturing and logistics operations, since
both manufacturing and logistics involve many interacting parts, e.g. machines,
vehicles, actors, facilities, etc. which are distributed in both time and space and where
the properties of these change over time. Furthermore, manufacturing and logistics
operations often have several objectives and constraints which are frequently in
conflict with each other, e.g. service levels vs costs, smooth production vs low
inventory levels. The advantage of ABM here is that simulations promote
simultaneous analysis of manufacturing and logistics operations from several
management and organisational perspectives, 1.e. perspectives can be widened. Finally,
the ability to encompass emergent phenomena makes ABM applicable to, and useful
for, modelling and simulating manufacturing and logistics operations. As repeatedly
demonstrated in complexity-related research, systems consisting of interacting
agents/parts exhibit behaviours on the aggregated level which are often impossible to
predict and which are sometimes counter-intuitive. Since emergent phenomena are the
collective or aggregated pattern of interacting agents, such phenomena must be
modelled from the bottom-up, and ABM exemplifies this.

Model predictions

(three months in advance) (per cent) Actual outcomes
Missed dispatches —15 na.
Warehouse levels —-34 na.
Overall costs -12 —13 per cent
Distribution and stock-keeping costs —49 (stock-keeping costs) — 30 per cent

Improved result for simulated month £120,000 > £100,000
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Based on the identified advantages of ABM found in literature, it can be concluded that
insights from the packaging company case show that the advantages in general were
verified.

* Increased realism. The great advantage of the model, as expressed by the
managers at the plant, was that it was directly comparable to the actual activities
carried out in the factory. The managers quickly understood what was
happening in the model and could easily contribute with more suggestions for
fine-tuning at the same time as they were given some insights into the emergent
behaviours the model provided in several different “what-if” scenarios.

* Included heterogeneity. One year’s production data was put into the model. This
means that input data such as actual orders, actual customers, etc. was
incorporated and not replaced by constant, average or random values.
Furthermore, each machine was treated as a single unit with its own
characteristics. This heterogeneity applies to customers and their order patterns
as well, since some of them have seasonal patterns and others make late changes
in both quantity and type of products.

* Included bounded rationality. In the model both the sales and planning agents
made decisions based on unknown changes in orders and machine breakdowns,
1.e. without complete information. In other words, decision-making dispersed
both in time and in space and without assumptions of full rationality was
considered and used in the model. To put emphasis on perfect rationality in the
manufacturing and logistics field misleads decision-makers. The fact is that
rationality is convenient in mathematical terms and is consequently an
assumption to make in the creation of models mainly based on mathematical
equations.

* Scalability and flexibility. As a result of the successful implementation and usage
of the model at this plant the packaging company decided to expand the model
and to include other plants in the latest version. This was possible since ABM
designs allow developers to add or remove agents or systems of agents without
needing to start from scratch. Each plant model could be developed separately
and calibrated to incorporate specific behaviours and data for each and every
machine, warehouse, sales department, production planning function, etc.
However, while several benefits of ABM have been identified the case confirms
the relatively high development costs in time and effort as well as in the in the
calibration of the model developed.

Implications for management

Aided by agent-based models and simulations, decision-makers can benefit in several
ways. Firstly, they acquire increased understanding of the impact of unscheduled
factors often found in reality, such as breakdowns, accidents and changes of demands.
Such aspects are reduced, and even ignored, when transferred to most traditional
models. Thus, the optimised solutions from these models mislead managers into
believing in future scenarios which scarcely reflect reality. Secondly, simulation
scenarios can guide practitioners’ intuition since patterns on the macro level emerge
out of agents’ interactive behaviour. Together, with insights from CAS these emergent
outcomes can be explained and understood and are thus beneficial for the improvement
of decision-making in companies. Thirdly, ABM can also help managers to find where



most leverage is to be gained in improvement efforts. This is based on the fact that
ABM allows models to encompass several business functions and how they affect each
other. Finally, as the case presented in this paper shows, there are sometimes even
opportunities to improve predictability based on the scenarios generated.

A concluding observation is that one of the major reasons for using ABM is that its
relevance for industry will increase, since models and simulations will be developed for
a chosen system, 1.e. models and simulations will be context-dependent. In addition, the
ABM approach will make research results comprehensible to people in industry and
organisations since they can identify themselves more directly with the agents. This is
because the agents in the models and the simulations often represent tangible parts in
the system being studied (e.g. machines, processes, etc.). Consequently, the ABM
approach narrows the gap between managers who are supposed to understand and
believe the results derived from models, and the modellers who construct them. This
usefulness has been identified in the case provided in this paper. Furthermore,
decision-makers aided by agent-based models can directly experiment with, and test,
policy changes. They can also create scenarios as to what outcomes such changes
would have on their organisations. In essence, ABM and simulation provide several
opportunities in improving decision-making.
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