
Kapitel 1

Ordinary differential
equations (ODE)

1.1 From finite difference to differential equations

Laws of nature and many similar theories in other fields of research analyze
the change of functions w.r.t. variables. Those changes are studied for small
examples and then continued to larger situations. This approach naturally
leads to the concept of a finite difference equations.

Example: How changes the trajectory of a vertically falling stone between
two observations?
We perform a measurement of position and velocity at a first (t1;x1, v1)
and a second (t2;x2, v2) point in time and can find (approximate) relations
between them. This allows to derive finite difference relations of the form

∆x

∆t
≈ v1,

∆v

∆t
= g

In the limit of continuous observations, i.e. for ∆ → 0, the finite difference
equation turns into a differential equation

dx

dt
≈ v1,

dv

dt
= g

Historically, differential equations and their solutions have a strong link to
dynamical systems. Then the independent variable is time and the derivative
is w.r.t. time. Of course, any other independent variable can be chosen.

Definition 1 (Differential equations). A differential equation is an equation
which contains (one or several) derivatives (d/dxi) of an unknown function
f(~x) w.r.t. the independent variables ~x = (x1, x2 . . . xn).
If, furthermore,

1



KAPITEL 1. ORDINARY DIFFERENTIAL EQUATIONS (ODE) 2

• all derivatives are w.r.t. a single variable only the differential equation
is called an ordinary differential equation (ODE), e.g. f ′(x) = −3f(x).

• derivatives w.r.t. different observables occur it is called a partial diffe-
rential equation, e.g. heat conduction in a one-dimensional bar (with
λ heat conductivity, c specific heat and ρ density of a material).

∂T (x, t)

∂t
=

λ

c ρ

∂2T (x, t)

∂t2

If a differential equation holds for a function f(~x) this function is called a
solution of the differential equation.

Notation

• The (total) derivative of a function f(x) w.r.t. the independent variable
x is best denoted by df

dx .

• The partial derivative of a function f(~x) w.r.t. an independent variable
xi is denoted by ∂f

∂x .

• Historically, the derivative w.r.t. the independent variable t (time) is
sometimes denoted by a dot, e.g. v = ẋ(t).

• Similarly, a derivative w.r.t. the independent variable x is denoted by
an apostrophe, e.g. f ′(x).

1.2 Classification of differential equations

Definition 2. Differential equations can be classified w.r.t. the following
definitions:

(1) Order: A differential equation is said to be of order n if the highest
derivative involved is the n − th derivative of the function w.r.t. the
independent variable

(2) Linear: A differential equation is called linear if the unknown func-
tion f(x) occurs to first order only, e.g. df(x)/dx = f(x).
Nonlinear: It is called nonlinear, if the unknown function occurs to
higher order, e.g. df(x)/dx = f3(x), or inside of a nonlinear function,
e.g. df(x)/dx = log(f(x)).

(3) Explicit: A differential equation of order n is called explicit if the
highest order derivative can be extracted such that

dnf(x)

dxn
= F

(
f(x),

df

dx
,
d2f

dx2
, . . . ,

dn−1f

dxn−1
;x

)
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Implicit: It is called implicit if the differential equation is given by
a functional expression of the form

F

(
f(x),

df

dx
,
d2f

dx2
, . . . ,

dnf

dxn
;x

)
= 0

(4) Autonomous: An explicit differential equation is called autonomous
if the function F(. . .) does not depend on the independent variable (x)
directly, i.e. F (. . .) 6= F (. . . , x). E.g. df/dx = −3f(x)

(5) Homogeneous: A differential equation is called homogeneous if all
its terms depend on the dependent variable or one of its derivati-
ves. Equivalently, one can say that the differential equation does not
contain a perturbation (s.b.). For instance, the differential equation
f ′(x) = α(x)f(x) is homogeneous but not autonomous.
Inhomogeneous: Otherwise, it is called inhomogeneous, e.g. df/dx =
f(x) + g(x). g(x) is called a perturbation.

(6) Separable: A differential equation is called separable if it can be
written as a product of functional expressions of the independent va-
riable (x) and of the dependent variable f(x)

df(x)

dx
= g(x) · h(f(x))

Example 1. Consider the following differential equations:

Definition 3 (Initial value problem (IVP)). An initial value problem is
defined by a differential equation of order n and a set of n so-called initial
conditions f (i)(x0) = yi0.

Definition 4. A boundary value problem is defined by a differential equation
of order n and up to i ∈ [1, n] boundary values (xi, f(xi)) = (xi, yi). This
defines n algebraic equations f(xi) = yi which can be used to fix the n general
integration constants.

1.3 Solving differential equations

There are different approaches (algorithms, receipies) for solving different
classes of ordinary differential equations. Solving a differential equation im-
plies some form of integration. To obtain a unique solution additional infor-
mation is required (initial values or boundary conditions). They are needed
to fix general integration constants.
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(A) General methods for solving ODEs

1.3.1 Educated guess

The most successful (but unsystematic) approach is to guess a solution and
prove that it is correct. This can be done easily as forming derivatives is a
simple operation.

Example 2. Consider the differential equation y′′(x) + y(x) − x = 0. The
solution is simple: y(x) = x. Test it! An initial value problem is set if two
constraints are given, e.g. y(0) = 0 and y′(0) = 1.

It is quite common to guess a solution and prove that it is correct.

1.3.2 Substitution

Consider a differential equation dy
dx = f(h(x, y)). Sometimes integrals and

differential equations can be solved more easily if a term including the de-
pendent variable (y(x)) is substituted by a different variable u = h(x, y). A
new differential equation is generated by

du

dx
=
∂h(x, y)

∂x
+
∂h(x, y)

∂y

dy

dx
=
∂h(x, y)

∂x
+
∂h(x, y)

∂y
f(u)

Then the new differential equation is solved for u(x) and from u = h(x, y)
the solution y(x) can be found.

Example 3. Consider the differential equation dy(x)
dx = f(ax+ by(x) + c).

Then u = h(x, y(x)) = ax+ by(x) + c. The new differential equation reads

du

dx
= a+ b

dy(x)

dx
= a+ bf(u)

Solve the new ODE for u(x) and substitute the solution into u = h(x, y) to
solve for y(x).

(B) Solving first order ODEs

A general first order ODE can be written as

df(x)

dx
= F (x, f(x)) or A(x, f(x))dx+B(x, f(x))df(x) = 0

1.3.3 Solving separable homogeneous first order ODEs

Separable homogeneous ODEs can be systematically solved by separating
the dependent and the independent variable. Both linear and non-linear
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ODEs can be treated in this way.

df(x)
dx = g(x) · h(f(x))

Use the following solution method to determine a solution:

(1) Separation of variables: df(x)
h(f(x)) = g(x)dx.

(2) Integration of both sides:∫ f(x)

f(x0)

1

h(f̃(x))
df̃(x) =

∫ x

x0

g(x̃)dx̃

(3) Solve for f(x): f(x) = . . .

(4) Determine coefficients by using initial condition f(x0) = y0.

Simple case: h(x) = id(x) = x. Then the general solution is an exponential:

Example 4. Discuss the following examples:

1. Let Ṗ (t) = λP (t) with P (t) > 0 describe the growth of a population of
bacteria with a growth rate λ. Initially, the population was P (0) = P0.

(1) Separation of variables: dP (t)/P (t) = λdt.

(2) Integration of both sides:∫
dP (t)

P (t)
=

∫
λdt ⇔ ln(P (t))− ln(P (t0)) = λ(t− t0)

(3) Solve for P(t): P (t) = P(t0)eλ(t−t0)

(4) Determine coefficients by using the initial condition.

This example can be solved for any initial condition (t0, P0).

2. Now let y′(x) = xy(x) with y(x) > 0. Use the algorithm:

(1) Separation of variables: dy(x)/y(x) = xdx.

(2) Integration of both sides:∫
dy(x)

y(x)
=

∫
xdx ⇔ ln(y(x))− ln(y(x0)) = 1/2(x2 − x2

0)

(3) Solve for y(x): y(x) = y(x0)e(x2−x20)/2

(4) Determine coefficients by using the initial condition.

This example can be solved for any initial condition (x0, y0).
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3. Let y′(x) =
√
y(x) with the initial condition y(0) = 0.

Trivial solution: y(x) = 0 ∀x ∈ R+
0 .

Nontrivial solution:

yλ(x) =

{
0 for 0 ≤ x ≤ λ
1
4(x− λ)2 for x > λ

There is an infinite number of solutions for this initial value (λ ∈ R+
0 )

4. Capacitor discharge over a resistor (see simulation, Problem set 2)

1.3.4 Solving exact ordinary differential equations

Definition 5. The total differential dU of a function U(x, y) of two inde-
pendent variables x and y is defined by

dU =
∂U(x, y)

∂x
dx+

∂U(x, y)

∂y
dy

Definition 6. A first degree first order ODE is called exact if with y = f(x)

A(x, y)dx+B(x, y)dy = 0 and
∂A

∂y
=
∂B

∂x
(*)

If an ODE is exact it represents the total differential dU(x, y) of a potential
function U(x, y). Thus,

A(x, y)dx+B(x, y)dy = dU(x, y) = 0 with

A(x, y) =
∂U(x, y)

∂x
and B(x, y) =

∂U(x, y)

∂y

Note that then the condition (*) is equivalent to the interchange of partial
derivations

∂A

∂y
=
∂B

∂x
⇔ ∂2U(x, y)

∂y∂x
=
∂2U(x, y)

∂x∂y

We can solve the ODE with the following solution method:

(1) Check thet the ODE is exact, i.e. that ∂A
∂y = ∂B

∂x

(2) Construct the potential function U(x.y):

(2.1) Integrating dU(x, y) = 0 results in U(x, y) = C1

(2.2) Integrating A(x, y) = ∂U(x,y)
∂x w.r.t. x results in

U(x, y) =

∫
A(x, y)dx+ F (y)
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(2.3) Plug the intermediate result for U(x, y) into B(x, y) = ∂U(x,y)
∂y ,

i.e. derive w.r.t. y, and

(2.4) Determine F (y) by solving a differential equation for F (y)

(3) Solve for y = f(x).

Example 5. Solve 2x dydx + 5x + 2y = 0. Why does separation of variables
not work here?

(0) Rewrite the ODE as (5x+ 2y) dx + 2x dy = 0 with
A(x, y) = 5x+ 2y and B(x, y) = 2x.
Variables cannot be separated here because A(x, y) 6= A(x).

(1) Check thet the ODE is exact: ∂A
∂y = 2 and ∂B

∂x = 2 (ok)

(2) Construct the potential function U(x.y):

(2.1) Integrating dU(x, y) = 0 results in U(x, y) = C1

(2.2) Integrating A(x, y) = ∂U(x,y)
∂x w.r.t. x results in

C1 = U(x, y) =

∫
(5x+ 2y)dx+ F (y) =

5

2
x2 + 2xy + F (y)

(2.3) Plug the intermediate result for U(x, y) into B(x, y) = ∂U(x,y)
∂y ,

i.e. derive w.r.t. y,

∂U(x, y)

∂y
= 2x+

dF (y)

dy
= B(x, y) = 2x

(2.4) Determine F (y) by solving the differential equation dF (y)
dy = 0,

i.e. F (y) = C2.

(3) From (2.2)

C1 =
5

2
x2 + 2xy + C2 ⇒ y(x) =

C1 − C2

2x
− 5

4
x =

C

2x
− 5

4
x

(4) Test if the function works in the ODE!

2x

(
− C

2x2
− 5

4

)
+ 5x+ 2

(
C

2x
− 5

4
x

)
= 0

These kind of integrals often occur in thermodynamics (heat engines, etc.).



KAPITEL 1. ORDINARY DIFFERENTIAL EQUATIONS (ODE) 8

1.3.5 Solving special inexact ordinary differential equations

Definition 7. A first degree first order ODE is called inexact if with y =
f(x)

A(x, y)dx+B(x, y)dy = 0 but
∂A

∂y
6= ∂B

∂x
(*)

Such an ODE can be always made exact by multiplying an integrating
factor µ(x, y) such that

∂(µ(x, y)A(x, y))

∂y
=
∂(µ(x, y)B(x, y))

∂x

This equation is only practical if µ depends on x or y, say µ = µ(x). Then
one can calculate the integrating factor from

µ(x)
∂A(x, y)

∂y
= µ(x)

∂B(x, y)

∂x
+B(x, y)

∂µ(x)

∂x

This can be solved by separation of variables

dµ

µ
=

1

B(x, y)

(
∂A

∂y
− ∂B

∂x

)
dx =: g(x)dx

and results in an exponential solution

µ(x) = e
∫
g(x)dx = e

∫
1

B(x,y)

(
∂A
∂y
− ∂B

∂x

)
dx

Example 6. Consider the ODE (4x+ 3y2) dx + 2xy dy = 0.
This implies A(x, y) = 4x+ 3y2 and B(x, y) = 2xy. With this

∂A(x, y)

∂y
= 6y ,

∂B(x, y)

∂x
= 2y

Hence this ODE is not exact. However,

1

B(x, y)

(
∂A

∂y
− ∂B

∂x

)
=

2

x

only depends on x. Thus an integrating factor can be found such that

µ(x) = e2
∫

dx
x = e2 ln(x) = x2

Now the ODE is solved like an exact ODE.
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1.3.6 Solving linear inhomogeneous first order ODEs

Definition 8. A linear inhomogeneous first order ODE is of the form

dy(x)

dx
+ p(x)y = q(x) or dy + (p(x)y − q(x))dx = 0

The term q(x) which makes the ODE inhomogeneous is called a perturbati-
on.

It is a special case of an inexact ODE as the integrating factor is always a
function of x alone. An integrating factor µ(x) can be chosen such that

µ(x)
dy(x)

dx
+ µ(x)p(x)y =

d

dy
[µ(x)y] = µ(x)q(x)

This equation contains two pieces of information:

(i) Solve for µ(x) from

d

dx
(µy) = µ

dy

dx
+
dµ

dx
y = µ

dy

dx
+ µp(x)y

⇒ dµ

dx
= µp(x) ⇒ µ(x) = e

∫
p(x)dx

(ii) Integrate such that µ(x)y =
∫
µ(x)q(x)dx

This method is also known as the variation of constants

Example 7. Solve the ODE

dy

dx
+ 2xy = 4x

check: the ODE is linear, first order and inhomogeneous.

(i) The integrating factor is given by

µ(x) = e
∫

2xdx = ex
2

(ii) Integrating

yex
2

= 4

∫
xex

2
dx = 2ex

2
+ C ⇒ y(x) = 2 + Ce−x

2
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1.3.7 General solution for inhomogeneous first order ODEs

Linear inhomogeneous ODEs can be systematically solved if the correspon-
ding homogeneous solution can be solved.

We consider linear ODEs of the following form:

dy(x)
dx + p(x)y = q(x)

q(x) is called a perturbation or inhomogeneity.

Theorem 1. The solution y(x) = yh(x) + yp(x) of a linear inhomogeneous
ODE is given by the superposition of the general solution of the corresponding
homogeneous ODE yh(x) and a particular solution yp(x) of the inhomoge-
neous ODE.

Method for solution:

(1) Solve the corresponding homogeneous ODE

(2) Find a particular solution of the inhomogeneous ODE, e.g. by calcu-
lating the integrating factor.

Example 8. Consider the following IVP based on a linear inhomogeneous
ODE:

y′ =
y

x
+ 5x with x > 0, y(1) = 0

Comparing with our general form we read off:

p(x) = −1

x
and q(x) = 5x

Since q(x) 6= 0 the ODE is inhomogeneous.
Method for solution.

(0) The general solution y(x) = yh(x)+yp(x) is given as the superposition
of the general solution of the corresponding homogeneous ODE yh(x)
and a particular solution yp(x) of the inhomogeneous ODE.

(1) Solution of the homogeneous ODE y′ = y
x by separation:

dy

y
=
dx

x
⇒ ln(y)−ln(y0) = ln(x) |e... ⇒ yh = Cx with C ∈ R

(2) Finding a particular solution of the inhomogeneous equation:

(2.1) Determine the integrating factor

µ(x) = e
∫
p(x)dx = e−

∫
1/xdx = e− ln(x)dx =

1

x
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(2.2) Integrate

yp(x) =
1

µ(x)

∫
µ(x)q(x)dx = x

∫
1

x
5xdx = 5x2

(3) General solution of the inhomogeneous equation: y(x) = yh + yp =
Cx+ 5x2.

(4) Determine the constant to solve the initial value problem: y(1) = 0 ⇒
C = −5. So the final solution is

y(x) = 5x2 − 5x

Example 9. Consider the linear inhomogeneous ODE:

y′ + 5y = sin(x)

Comparing with our general form we read off:

p(x) = 5 and q(x) = sin(x)

Since q(x) 6= 0 the ODE is inhomogeneous. As p(x) is constant it is called
an ODE with constant coefficients. This is a particular simple case because
the homogeneous solution and the integrating factor are simple exponential
functions.

Method for solution.

(0) The general solution y(x) = yh(x)+yp(x) is given as the superposition
of the general solution of the corresponding homogeneous ODE yh(x)
and a particular solution yp(x) of the inhomogeneous ODE.

(1) Solution of the homogeneous ODE y′ = −5yx by separation:

dy

y
=
dx

x
⇒ ln(y)−ln(y0) = −5x |e... ⇒ yh = Ce−5x with C ∈ R

(2) Finding a particular solution of the inhomogeneous equation:

(2.1) Determine the integrating factor

µ(x) = e
∫
p(x)dx = e

∫
5dx = e5x

(2.2) Integrate

yp(x) =
1

µ(x)

∫
µ(x)q(x)dx = e−5x

∫
e5x sin(x)dx =

5

26
sin(x)− 1

26
cos(x)

(3) General solution of the inhomogeneous equation: y(x) = yh + yp =
Ce−5x + 5

26 sin(x)− 1
26 cos(x)

Integration is done by performing an integration by parts twice. Alternative-
ly, a general ansatz yp = A sin(x) +B cos(x) can be used.
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1.3.8 Existence of solutions

Different situations can occur:

1. The ODE cannot be solved. No solution exists.

2. The ODE can be solved, i.e. it exists a formal solution, but the initial
value problem (IVP) or boundary value problem (BVP) cannot be
solved.

3. The IVP can be solved, but not uniquely. Then there exists a solution
space of dimension d > 0.

4. The IVP can be solved uniquely.

(B) Solving higher order ODEs

1.4 Solving linear second order ODEs with con-
stant coefficients

1.4.1 General method

We consider ODEs of the following form:

y′′ + ay′ + by = g(x)

Solution method:

(1) Solution of the homogeneous ODE y′′ + ay′ + by = 0.

(1.1) Use the exponential Ansatz y = eλx. By inserting it into the
ODE one obtains the characteristic polynomial

P (λ) = λ2 + aλ+ b = 0

(1.2) Calculate the roots of the polynomial (either real or complex
numbers)

λ1/2 = −1

2

(
a±

√
a2 − 4b

)
Every root corresponds to a solution of the homogeneous ODE.
These solutions (y1(x), y2(x)) are called fundamental solutions
or basis solutions of the homogeneous ODE if they are linear-
ly independent, i.e. if the Wronski determinant (also called the
Wronskian) is nonzero

W (x) =

∣∣∣∣ y1 y2
dy1
dx

dy2
dx

∣∣∣∣ 6= 0
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(1.3) Construct the corresponding fundamental solutions for all roots
of the characteristic polynomial. This depends on the discrimi-
nant D = a2 − 4b

I D > 0: The characteristic polynomial has two distinct real
roots: λ1 6= λ2. Then the two solutions are exponentials:

y1(x) = eλ1x and y2(x) = eλ2x

II D = 0: The characteristic polynomial has a degenerate real
solution λ1 = λ2 = λ. Then the two solutions need to be
constructed as linear independent functions

y1(x) = eλx and y2(x) = xeλx

III D < 0: The characteristic polynomial has two distinct com-
plex roots which are complex conjugates to each other: λ1 6=
λ2 with λ1/2 = α ± jβ. While the real part brings about a
damping / growth factor, the imaginary part results in an
oscillation:

y1(x) = eαx cos(βx) and y2(x) = eαx sin(βx)

(1.4) The general solution of the homogeneous ODE is given by the
sum of both solutions (with C1, C2 ∈ R)

yh = C1(x)y1(x) + C2(x)y)2(x)

(2) Find a particular solution of the inhomogeneos equation

(2.V1) Full formal approach (once in a lifetime):

(2.V1.1) Set up a system of two coupled equations for the deriva-
tives of two x-dependent constants for the particular solution
of the inhomogeneous equation. This can be done by

(2.V1.1.1) Assume that the constants are x-dependent

yh = C1(x)y1(x) + C2(x)y2(x)

(2.V1.1.2) Calculate the derivatives:

yh(x) = C1(x)y1(x) + C2(x)y2(x)

y′h(x) = C ′1(x)y1(x) + C1(x)y′1(x) +

C ′2(x)y2(x) + C2(x)y′2(x)

y′′h(x) = C ′′1 (x)y1(x) + C ′1(x)y′1(x) +

C ′1(x)y′1(x) + C1(x)y′′1(x) +

C ′′2 (x)y2(x) + C ′2(x)y′2(x) +

C ′2(x)y′2(x) + C2(x)y′′2(x)
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(2.V1.1.3) Make a simplifying choice:

0 = C ′1(x)y1(x) + C ′2(x)y2(x) ∀x (∗) ⇒
0 = C ′′1 (x)y1(x) + C ′1(x)y′1(x) +

C ′′2 (x)y2(x) + C ′2(x)y′2(x)

This results in

yh(x) = C1(x)y1(x) + C2(x)y2(x)

y′h(x) = C1(x)y′1(x) + C2(x)y′2(x)

y′′h(x) = C ′1(x)y′1(x) + C1(x)y′′1(x) +

C ′2(x)y′2(x) + C2(x)y′′2(x)

(2.V1.1.4) Insert this ansatz into the homogeneous ODE

y′′ + ay′ + by = g(x)

and sort the terms:

C1 [y′′1(x) + ay′1(x) + by1(x)] = 0

C2 [y′′2(x) + ay′2(x) + by2(x)] = 0

So only a simple equation remains:

C ′1(x)y′1(x) + C ′2(x)y′2(x) = g(x) (∗∗)

(2.V1.1.5) Arrange the two equations (*) and (**) in a sy-
stem of coupled equations:(

y1 y2
dy1
dx

dy2
dx

)(
C ′1(x)
C ′2(x)

)
=

(
0

g(x)

)
Note that the matrix is the Wronski matrix.

(2.V1.2) Solve the system of equations (e.g. using Cramer’s rule.
Then the Wronzkian is used)

W (x) =

∣∣∣∣ y1 y2
dy1
dx

dy2
dx

∣∣∣∣
and calculate the two x-dependent constants by integration:

C1(x) =

∫
1

W (x)
(−y2(x)g(x)) dx and

C2(x) =

∫
1

W (x)
(y1(x)g(x))
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(2.V1.3) Construct the particular solution from the x-dependent
constants and the solutions of the homogeneous system as

yp = C1(x)y1(x) + C2(x)y2(x)

(2.V1) Short version:

(2.V1.1a) Calculate the Wronzkian:

W (x) =

∣∣∣∣ y1 y2
dy1
dx

dy2
dx

∣∣∣∣
(2.V1.2a) Use the semi-finished formulae

C1(x) =

∫
1

W (x)
(−y2(x)g(x)) dx and

C2(x) =

∫
1

W (x)
(y1(x)g(x))

(2.V1.3a) Construct the particular solution from the x-dependent
constants and the solutions of the homogeneous system as

yp = C1(x)y1(x) + C2(x)y2(x)

(2.V2) Alternative approach:
Select an Ansatz which corresponds to the structure of the inho-
mogeneous term and fix the coefficients:

g(x) Conditions Ansatz for yp(x)

r 6= λi ∀i berx

aerx r = λi (single root) bxerx

r = λi (double root) bx2erx

a1 cos(rx) r 6= λi ∀i b1 cos(rx) + b2 sin(rx)
+a2 sin(rx) r = λi (single root) x [b1 cos(rx) + b2 sin(rx)]

r = λi (double root) x2 [b1 cos(rx) + b2 sin(rx)]

b 6= 0
∑N

i=0 bix
i∑N

i=0 aix
i a 6= 0, b = 0 x

∑N
i=0 bix

i

a = b = 0 x2
∑N

i=0 bix
i

Example 10. Consider the ODE y′′ + 2y′ − 8y = x

(1) Solution of the homogeneous ODE y′′ + 2y′ − 8y = 0.

(1.1) Use the exponential Ansatz y = eλx. By inserting it into the
ODE one obtains the characteristic polynomial

P (λ) = λ2 + 2λ− 8 = 0
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(1.2) Calculate the roots of the polynomial (either real or complex
numbers)

λ1 = 2 λ2 = −4

Every root represents one solution of the homogeneous ODE.

(1.3) Construct the corresponding solutions depending on the discri-
minant D = a2 − 4b

I D > 0: The characteristic polynomial has two distinct real
roots: λ1 6= λ2. Then the two solutions are exponentials:

y1(x) = e2x y2(x) = e−4x

(1.4) The general solution of the homogeneous ODE is given by the
sum of both solutions (with C1, C2 ∈ R)

yh = C1e
2x + C2e

−4x

(2) Find a particular solution of the inhomogeneos equation

(2.V1) Formal approach:

(2.V1.1) Instead of an integrating factor calculate the determi-
nant of the Wronski matrix, the so-called Wronskian:

W (x) =

∣∣∣∣ e2x e−4x

2e2x −4e−4x

∣∣∣∣ = −6e−2x

(2.V1.2) Calculate two x-dependent constants for the particular
solution of the inhomogeneous equation using the solutions of
the homogeneous system:

C1(x) =

∫
1

−6
e2x
(
−e−4xx

)
dx = − 1

12
e−2x

(
x+

1

2

)
C2(x) =

∫
1

−6
e2x
(
e2xx

)
=

1

24
e4x

(
−x+

1

4

)
(2.V1.3) Construct the particular solution from the x-dependent

constants and the solutions of the homogeneous system as

yp = C1(x)y1(x) + C2(x)y2(x) = −1

8
x− 1

32

(2.V2) Alternative approach: Select an Ansatz which corresponds to
the structure of the inhomogeneous term and fix the coefficients:
The relevant entry of the table is

g(x) Ansatz for yp(x)∑N
i=0 aix

i
∑N

i=0 bix
i with N = 1
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y(x) = b1x+ b0

y′(x) = b1

y′′(x) = 0

Inserting this ansatz into the ODE gives

2b1 − 8b1x− 8b0 = x ⇒ (2b1 − 8b0)− (8b1 + 1)x = 0

This equation must hold for all x ∈ R. Hence each bracket must
vanish independently and b1 = −1/8, b0 = 1/4b1 = −1/32.

1.4.2 The harmonic oscillator

We study the linear second order ODE which describes small oscillations
around an equilibrium value. For instance, mechanical motion is goverened
by the Newton law (in one dimension)

ma = m
d2x(t)

dt
=
∑
i

Fi

( with m: mass, a: acceleration, x: position, t: time, F: force)
This is a second order ODE in x(t).
For different sums of forces different solutions arise. We only consider forces
which are maximally linear in x(t) such that a linear ODE holds.
The defining force of the harmonic oscillator follows from Hooke’s law

F = −Dx = −mω2

Other forces may be added.
Name of oscillator additional Fi ODE (divided by m)

Free undamped 0 d2x(t)
dt2

+ ω2
0x = 0

Free damped −bv(t) d2x(t)
dt2

+ 2δ dx(t)
dt + ω2

0x = 0

Harmonically driven F0 sin(Ωt) d2x(t)
dt2

+ 2δ dx(t)
dt + ω2

0x = F0 sin(Ωt)
and damped −bv(t)

δ is called the damping factor and intentionally defined with a factor 2 as
2δ = b/m. ω2

0 = D/m is called the eigenfrequency of the oscillation.

Free damped oscillator: A good example case for solving a homoge-
neous linear second order ODE:

d2x(t)

dt2
+ 2δ

dx(t)

dt
+ ω2

0x = 0
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We first derive the characteristic polynomial with the ansatz x(t) = eλt:

λ2 + 2δλ+ ω2
0 = 0 ⇒ λ1/2 = −δ ±

√
δ2 − ω2

0

The solutions depend on the relative strength of the damping δ w.r.t. the
eigenfrequency ω0. Three cases exist:

(1) δ < ω0: Underdamped regime with damped but oscillating solution
(dt. Schwingfall)

(2) δ = ω0: Critically damped regime (dt. Aperiodischer Grenzfall)

(3) δ < ω0: Overdamped regime without oscillations (dt Kriechfall).

We calculate the solution for those three cases.

(1) The Ansatz for the underdamped regime is

x(t) = e−δt[C1 sin(ωdt) + C2 cos(ωdt)]

with ωd =
√
ω2

0 − δ2.

(2) This is a degenerate case with double roots: The Ansatz for the criti-
cally damped regime is now given by

x(t) = (C1t+ C2)e−δt

(3) The Ansatz for the overdamped regime is a linear superposition of
damped exponentials

x(t) = C1e
λ1t + C2e

λ2t

Two initial conditions are needed to fix the two constants.

Harmonically driven damped oscillator: The harmonically driven os-
cillator is described by

d2x(t)

dt2
+ 2δ

dx(t)

dt
+ ω2

0x =
F0

m
sin(Ωt)

We have already found the general solution of the homogeneous equation.
The inhomogeneous equation can be solved with a real ansatz or, simpler,

with a complex ansatz function. Note that

ejΩt = cos(Ωt) + j sin(Ωt)

Since the ODE is linear we can also solve a complex version

d2x(t)

dt2
+ 2δ

dx(t)

dt
+ ω2

0x =
F0

m
ejΩt
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and take the imaginary part of the solution. We use the ansatz

xp(t) = Aej(Ωt+φ)

dxp(t)

dt
= AjΩej(Ωt+φ)

d2xp(t)

dt2
= −AΩ2ej(Ωt+φ)

Inserting this into the complex ODE results in

−Ω2e−jφ + 2δΩje−jφ + ω2
0e
−jφ =

F0

mA

(Ω2 − ω2) + j(2δΩ) = F0/Ae
jφ

We read this as a complex number:(
F0

mA

)2

= (Ω2 − ω2)2 + (2δΩ)2 ⇒

A(Ω) =
F0

m
√

(Ω2 − ω2)2 + 4δ2Ω2

tan(φ) =
2δΩ

Ω2 − ω2

φ(Ω) =


arctan

(
2δΩ

Ω2−ω2

)
(Ω < ω0)

π
2 (Ω = ω0)

arctan
(

2δΩ
Ω2−ω2

)
+ π (Ω > ω0)

Resonance Discussion of A(Ω) shows resonant behavior. We find the re-
sonance frequency by searching for the minimum of the denominator. This
results in Ωr =

√
ω2

0 − 2δ2.
Note the relation Ωr < ωd < ω0, i.e. for a damped oscillator the reso-

nance frequency is smaller as the damped oscillation frequency and of the
eigenfrequency of the oscillator.

1.4.3 Generalization for linear ODEs of n-th order with con-
stant coefficients

We consider ODEs of the following form (with ai ∈ R):

y(n) + an−1y
(n−1) + . . .+ a1y

′ + a0y = g(x)

Solution method:

(1) Find a solution of the homogeneous ODE y(n) + an−1y
(n−1) + . . . +

a1y
′ + a0y = 0.
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(1.1) Use the exponential Ansatz y = eλx. By inserting it into the
ODE one obtains the characteristic polynomial

P (λ) = λn + an−1λ
n−1 + . . .+ a1λ+ a0 = 0

(1.2) Calculate the roots of the polynomial (either real or complex
numbers) Every root represents one solution of the homogeneous
ODE.

(1.3) Construct the corresponding solutions depending on the charac-
ter of the root:

I Single real or complex root: The corresponding solution is a
real or complex exponential:

y(x) = eλx

II Multiplicity of roots: The characteristic polynomial has de-
generate solutions with a multiplicity k: Then the k solutions
need to be constructed as linear independent functions

y
[k]
j (x) = xjeλx j ∈ [0, k − 1]

(1.4) The general solution of the homogeneous ODE is given by the
sum of all solutions (with Ci ∈ R)

yh =
n∑
i=1

Ciyi(x)

(2) Find a particular solution of the inhomogeneos equation

(2.V1) Formal approach:

(2.V1.1) Solve the following system of equations for the deriva-
tives of the x-dependent constants C ′(x)

y1 y2 . . . yn(x)
y′1 y′2 . . . y′n(x)
...

...
...

y
(n−1)
1 y

(n−1)
2 . . . y

(n−1)
n (x)




C ′1(x)
C ′2(x)

...
C ′n(x)

 =


0
0
...

g(x)


(2.V1.2) Calculate all x-dependent constants for the particular

solution of the inhomogeneous equation by integrating the
expressions for C ′(x).

(2.V1.3) Construct the particular solution from the x-dependent
constants and the solutions of the homogeneous system as

yp(x) =
n∑
i=1

Ci(x)yi(x)

(2.V2) Alternative approach: Select an Ansatz which corresponds to
the structure of the inhomogeneous term and compare the coef-
ficients.
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1.4.4 Alternative treatment of linear ODEs of n-th order

Expansion of a higher order explicit ODE. An ODE of order n > 1
with dependent variable y(x) and independent variable x

y(n) + an−1y
(n−1) + . . .+ a1y

′ + a0y = g(x)

can be expanded as a set of n ODEs of order one by substitution: (n − 1)
new dependent variables zi(x) are defined by the differential equations zi =
diy/dxi. Then the original ODE reads

dzn−1

dx
+ an−1z(n−1) + . . .+ a1z1 + a0y(x) = g(x)

Together with the (n−1) defining ODEs for zi(x) a aystem of n coupled linear
first order ODEs has been obtained. This can be solved e.g. numerically.

1.5 Systems of coupled ODEs


