Mathematics III

Prof. Dr. Michael Möckel WS 2022/23

Fast Fourier Transformation (FFT)

Fast Fourier Transform Foundation of our modern civilization

History of FFT algorithm:

- Gauss (1805): calculation of astronomical predictions
- Cooley, Tukey (1965, IBM): efficient implementation on modern computers

Many applications of the Fast Fourier Transform:

- Digital signal processing: Feature selection in the frequency domain
- Reconstruction of images from nuclear magnetic resonance (NMR) tomography
- Digital compression algorithms (MP3 Standard, save jpeg)
- Data transmission (telecommunication)
- Basically all modern standards use FFT (OFCD for WLAN, DVBT, LTE (mobil))

Orthogonal Frequency-Division Multiplexing (OFCD)

- Decomposition of signal
- Simultaneous transmission of Fourier coefficients on multiple carrier frequencies (7000 frequencies, each carrying 1,2,4 or 8 bit (DVBT2))
- Reconstruction of the original signal:
 - use of 7000 frequency filters not possible!

This would not work with DFT as done in lecture

Numerical complexity of Discrete Fourier Series (DFT):

O(N^2) multiplications:

- We need n coefficients A and n coefficients B, in total 2n coefficients
- Each coefficient is calculated by multiplying 2n function values with sin/cos
- In total this is $N * N = 4^n^2$ multiplications (+ some additions, less costly)

Numerical complexity of Fast Fourier Transform (FFT):

- O(N log(N))
- Much faster!!! Bsp N = 1e6, N² = 1e12,
 N log(N) = 13e6,
 - i.e. about 100,000 times smaller!

Example:

Audio signal

sampled at 44.1 kHz (CD)

10 sec 4.4e5 values

20 sec 1.0e6 values

Gauss: calculation of orbit of Pallas

12 measurement points of a periodic orbit (two angles)

											300	
X	408	89	-66	10	338	807	1238	1511	1583	1462	1183	804

- Numerical complexity: N² = 144 vs N log(N) = 30 operations
- Expectation for the motion, but 12 parameters had to be determined

$$X = f(\theta) = a_0 + \sum_{k=1}^{5} \left[a_k \cos\left(\frac{2\pi k\theta}{360}\right) + b_k \sin\left(\frac{2\pi k\theta}{360}\right) \right] + a_6 \cos\left(\frac{12\pi\theta}{360}\right)$$

Modern solution:

k	0	1	2	3	4	5	6
a_{k}	780.6	-411.0	43.4	-4.3	-1.1	0.3	0.1
$b_{m{k}}$	_	-720.2	-2.2	5.5	-1.0	-0.3	_

Prof. Osgood, Lecture Notes

Complex representation of Discrete Fourier Transform

$$\mathbf{F}[m] = \sum_{k=0}^{N-1} \mathbf{f}[k] \omega^{-km} = \sum_{k=0}^{N-1} \mathbf{f}[k] e^{-2\pi i km/N}$$
 Vector of Fourier coefficients
$$\omega = e^{2\pi i/N}$$
 Fourier basis functions

$$\underline{\mathcal{F}} = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \cdots & \omega^{-(N-1)} \\ 1 & \omega^{-2} & \omega^{-4} & \cdots & \omega^{-2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{-(N-1)} & \omega^{-2(N-1)} & \cdots & \omega^{-(N-1)^2} \end{pmatrix} \text{ Discrete Fourier Transfor As matrix multipl.}$$

Transform As matrix

Inverse Discrete Fourier Transform

• Inverse DFT = re-composition of original function from Fourier coefficients

$$\frac{1}{N} \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega^{1} & \omega^{2} & \cdots & \omega^{(N-1)} \\ 1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{(N-1)} & \omega^{2(N-1)} & \cdots & \omega^{(N-1)^{2}} \end{pmatrix} \begin{pmatrix} F[0] \\ F[1] \\ F[2] \\ \vdots \\ F[N-1] \end{pmatrix} = \begin{pmatrix} f[0] \\ f[1] \\ f[2] \\ \vdots \\ f[N-1] \end{pmatrix}$$

Inverse DFT: sign of exponent, prefactor differ!

Compact representation of DFT and iDFT as matrices is very clear!

$$(\underline{\mathcal{F}})_{mn} = \omega^{-mn}, \quad m, n = 0, 1, \dots, N-1$$

Fast Fourier Transform Algorithm (FFT)

• Example: N=4. $\omega_4 = e^{2\pi i/4}$

$$\begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & \omega_4^{-1} & \omega_4^{-2} & \omega_4^{-3} \\
1 & \omega_4^{-2} & \omega_4^{-4} & \omega_4^{-6} \\
1 & \omega_4^{-3} & \omega_4^{-6} & \omega_4^{-9}
\end{pmatrix} = \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & \omega_4^{-1} & -1 & -\omega_4^{-1} \\
1 & -1 & 1 & -1 \\
1 & -\omega_4^{-1} & -1 & \omega_4^{-1}
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & \omega_4^{-1} & -1 & -\omega_4^{-1} \\ 1 & -1 & 1 & -1 \\ 1 & -\omega_4^{-1} & -1 & \omega_4^{-1} \end{pmatrix} \begin{pmatrix} \mathbf{f}[0] \\ \mathbf{f}[1] \\ \mathbf{f}[2] \\ \mathbf{f}[3] \end{pmatrix} = \begin{pmatrix} \mathbf{f}[0] + \mathbf{f}[1] + \mathbf{f}[2] + \mathbf{f}[3] \\ \mathbf{f}[0] + \mathbf{f}[1]\omega_4^{-1} - \mathbf{f}[2] - \mathbf{f}[3]\omega_4^{-1} \\ \mathbf{f}[0] - \mathbf{f}[1] + \mathbf{f}[2] - \mathbf{f}[3] \\ \mathbf{f}[0] - \mathbf{f}[1]\omega_4^{-1} - \mathbf{f}[2] + \mathbf{f}[3]\omega_4^{-1} \end{pmatrix}$$

FFT – clever sorting!

- Trick: Smart arrangement of products and re-use of intermediate results
- Sort even and odd terms on each step

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & \omega_4^{-1} & -1 & -\omega_4^{-1} \\ 1 & -1 & 1 & -1 \\ 1 & -\omega_4^{-1} & -1 & \omega_4^{-1} \end{pmatrix} \begin{pmatrix} \mathbf{f}[0] \\ \mathbf{f}[1] \\ \mathbf{f}[2] \\ \mathbf{f}[3] \end{pmatrix} = \begin{pmatrix} \mathbf{f}[0] + \mathbf{f}[1] + \mathbf{f}[2] + \mathbf{f}[3] \\ \mathbf{f}[0] + \mathbf{f}[1]\omega_4^{-1} - \mathbf{f}[2] - \mathbf{f}[3]\omega_4^{-1} \\ \mathbf{f}[0] - \mathbf{f}[1] + \mathbf{f}[2] - \mathbf{f}[3] \\ \mathbf{f}[0] - \mathbf{f}[1]\omega_4^{-1} - \mathbf{f}[2] + \mathbf{f}[3]\omega_4^{-1} \end{pmatrix}$$

Equivalent representation, but new interpretation as a simpler DFT

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & \omega_4^{-1} \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -\omega_4^{-1} \end{pmatrix} \begin{pmatrix} \mathbf{f}[0] + \mathbf{f}[2] \\ \mathbf{f}[0] + \mathbf{f}[2]\omega_2^{-1} \\ \mathbf{f}[1] + \mathbf{f}[3] \\ \mathbf{f}[1] + \mathbf{f}[3]\omega_2^{-1} \end{pmatrix} = \begin{pmatrix} \mathbf{f}[0] + \mathbf{f}[2] + \mathbf{f}[1] + \mathbf{f}[3] \\ \mathbf{f}[0] + \mathbf{f}[2]\omega_2^{-1} + \mathbf{f}[1]\omega_4^{-1} + \mathbf{f}[3]\omega_4^{-1}\omega_2^{-1} \\ \mathbf{f}[0] + \mathbf{f}[2]\omega_2^{-1} - \mathbf{f}[1]\omega_4^{-1} - \mathbf{f}[3]\omega_4^{-1}\omega_2^{-1} \end{pmatrix}$$

DFT with N' = N/2 for even and odd points!

Decomposition into DFTs of smaller N

Block structure:

$$egin{pmatrix} 1 & 0 & 1 & 0 & 0 \ 0 & 1 & 0 & \omega_4^{-1} \ 1 & 0 & -1 & 0 \ 0 & 1 & 0 & -\omega_4^{-1} \ \end{pmatrix}$$

$$\begin{pmatrix}
\mathbf{f}[0] + \mathbf{f}[2] \\
\mathbf{f}[0] + \mathbf{f}[2]\omega_2^{-1}
\end{pmatrix}$$

$$\mathbf{f}[1] + \mathbf{f}[3] \\
\mathbf{f}[1] + \mathbf{f}[3]\omega_2^{-1}$$

$$\begin{vmatrix} 1 & 0 \\ 0 & \omega_4^{-1} \\ -1 & 0 \\ 0 & -\omega_4^{-1} \end{vmatrix}$$

$$\begin{vmatrix} \mathbf{f}[0] + \mathbf{f}[2] \\ \mathbf{f}[0] + \mathbf{f}[2]\omega_2^{-1} \\ \mathbf{f}[1] + \mathbf{f}[3] \\ \mathbf{f}[1] + \mathbf{f}[3]\omega_2^{-1} \end{vmatrix}$$

$$= \begin{pmatrix} \mathbf{f}[0] + \mathbf{f}[2] + \mathbf{f}[1] + \mathbf{f}[3] \\ \mathbf{f}[0] + \mathbf{f}[2]\omega_2^{-1} + \mathbf{f}[1]\omega_4^{-1} + \mathbf{f}[3]\omega_4^{-1}\omega_2^{-1} \\ \mathbf{f}[0] + \mathbf{f}[2]\omega_2^{-1} - \mathbf{f}[1]\omega_4^{-1} - \mathbf{f}[3]\omega_4^{-1}\omega_2^{-1} \end{pmatrix}$$

- Each block of the second matrix represents a DFT with N' = N/2 (here: 4/2=2)
- Such a DFT is simpler to calculate
- The first matrix represents a mixing term

Even-odd Order by Bit Inversion of Index

f [0]	f [0]	f [0]	f [0]
f [1]	f[2]	f [4]	f[4]
f [2]	f[4]	f [2]	f[2]
f [3]	f[6]	f [6]	f[6]
f[4]	f[1]	f [1]	f [1]
f [5]	f[3]	f [5]	f[5]
f [6]	f [5]	f[3]	f[3]
f[7]	f [7]	f [7]	f[7]

$\mathbf{f}[0]$	000	$\mathbf{f}[0]$	000
f[1]	001	f[4]	100
f[2]	010	f[2]	010
f [3]	011	f [6]	110
$\mathbf{f}[4]$	100	f[1]	001
f[5]	101	f[5]	101
f [6]	110	f[3]	011
f[7]	111	f [7]	111

New order can be reached by simple bit inversion!

Combination of Even and Odd Contributions (Radix 2 algorithm)

Iterative Procedure

- In every step N coefficients need to be computed using N complex multiplications and N additions
- Because of $\omega_N^{k+N/2} = -W_N^k$ half of them are the same up to a sign
- i.e. in every step only N/2 complex multiplications are needed

If $N = 2^M$ the FFT is particularly efficient. Then $M = \ln(N)/\ln(2)$ iterations are needed

 $N \ln(N)$