Kapitel 1

Fourier-Series

1.1 General remarks

1.1.1 Series representations of functions

Definition 1. A set of functions {b;}; is called a basis of a space of func-
tions * definition F = {f|f :RD> D — W C R,z — f(x)} if any function
of that space can be represented as a linear combination of uniquely de-
termined coefficients ¢; € R (combination with real coefficients) or ¢; € C
(combination with complex coefficients) such that

f(zx) :Zci bi(x) Ve € D

The set of linear coefficients {c¢;}; are 'coordinates’ in function space.
Equality only holds if the sum converges. This may require to restrict the
space to some specific functions (continuous, differentiable, periodic, etc).

Definition 2 (Scalar product for vectors and functions). The scalar product
(also called dot product, inner product) for two vectors i, v € R™ is defined
by the sum over the product of corresponding coefficients

u-v= E U;V;
i

In analogy, the scalar product of two functions f,g € F of a function space
F is defined by the integral over the product of both functions

(flg) = /D f(z) glz) da

Two functions f,qg are called orthogonal iff (f|g) = 0.
A basis of a function space is called orthogonal iff (b;|b;) = 0 for all i # j
and orthonormal iff, in addition, (b;|b;) =1 for all i.

!Mathematically, a function space is a vector space. A full definition of a vector space
is given in linear algebra.
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Note: The scalar product can be understood as the projection of its two
factors onto each other.

Example: Scalar products of important functions

0 for k+#1
1. fOZW sin(kz)sin(lz) de =< © for k=1#0
0 for k=1=0

0 for k#I1
2. fo% cos(kz) cos(lx) dx = m for k=1+#0
2r for k=1=0

3. fo% cos(kz)sin(lz) dv ={ 0 for k,leR

1.1.2 Recap: Taylor expansion
Function space of (m+1)-fold differentiable functions

Let Z C R be an open interval, ¥ = {f|f : R D> I - W C Rz —
f(z), f (m+1) times differentiable in I } the function space of all in T (m +
1)- times differentiable functions .

Taylor expansion

The Taylor expansion can be seen as a special form of an approximate series
expansion of f € F with respect to the basis of monomials {b;}; = {x'},.

n f(k)
zeTis fz) = kzof k(!xo)(x—xo)k—i-Rn(x,xo) (1.1)
Ry (z,x0) = m(z: — 20)"™ with min(z, z¢) < € < max(z, )

The crucial question is for which values x € I the Taylor series converges.

Example: Taylor series of the exponential function
It holds Vn : f(z) = exp(z) and Vn : f("(0) = 1. Then

oo

T(x,z90=0) = Z x"  (Taylor series of exponential function) (1.2)
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1.1.3 Periodic functions
Definition 3. Let f : R — R be a function. f is called periodic or T-
periodic with a period T € RT if

f+T)=f(t) VteR

For T' = 27 we call the function 27 periodic.

(1) sin(kx),cos(kz) k € Z are 27 /k — periodic (higher frequencies)

1 for xz € [2k,2k+1]

(2) f(:z):{ 0 for e [2k+1.2k+2 k € Z, is 2 periodic

(x —2k) for =€ [2k,2k+ 1]

(3) f(x):{ | (¢—(2k+1) for ze[2k+1,2k+2 "EF

(4) f(x) =z in [—7, ] (2m-periodic sawtooth function)

Theorem 1 (Translation of domain). Let f : R — R be a T-periodic func-
tion and xog € R. Then

T zo+T
/ f(z) dv = / f(z)dx VxeR
0 0

i.e. integrals over a full period of a periodic function can be arbitrarily shifted.

1.2 Fourier series

1.2.1 Fourier basis

Definition 4 (Fourier basis). Consider an interval [zg,zo + T| of length
T eR.

e The set of T-periodic real functions {cos (2rkx/T) ,sin (2nkx/T)}ken
are called real Fourier basis functions.

e The set of T-periodic complex functions {e*>™/T) = cos (2mkx/T) +
isin (2rkx/T)}kez are called complex Fourier basis functions.
1.2.2 Scalar products of the real Fourier basis functions
Consider an interval D = [xg, 29 + 1] where T € R.

0 for k#1
1. f;)(ﬁ'T sin (%) sin (%) de =< T/2 ior ]lz _ ; £0
0 or =[=0



KAPITEL 1. FOURIER-SERIES 4

0 for k#1
2. f;oﬁT cos (ZZE2) cos (22H2) dx = T/z% ior I];: = é #0
or k=1=0

3 f;OO”LTcos(%)SiH(%) de= 0 for kleR

1.2.3 Fourier series representation

Definition 5. The Fourier series representation of a T-periodic function f
which complies with the Dirichlet conditions (see below) is given by a linear
superposition of the respective Fourier basis functions with real coefficients
ak,br € R (real Fourier series) or complex coefficients ¢, € C (complex
Fourier series)

S (x) S+ >, ax cos (%) + by sin (%) for k € N (real Fourier series)
Xr) = T
! >k cke IR for kel (complex Fourier series)

The coefficients ay, by (or cx) are called Fourier coefficients and constitute
the real (or complex) Fourier series.

As 1/T =: fo is a frequency, we can say that the (Hertzian) frequencies
involved in the Fourier series representation are given by fr =k - fo.
Alternatively, the (angular) frequencies wo = 27 /T and wy, = k-wq are used.

Remark: The Fourier series has generally an infinite number of nonzero
elements. However, for all relevant functions the Fourier coefficients decay
with some power of 1/k.

Theorem 2 (Dirichlet conditions). A function f :R D> D — W C R can be
expanded as a Fourier series if

1. fis periodic

2. fis continuous almost everywhere; a finite number of finite disconti-
nuities (jumps) is however possible.

3. has only a finite number of minima and maxima within one period,
i.e. it is not oscillating too rapidly

4. The integral over one period [, |f(z)|dx < co must converge.

Theorem 3. The expansion of a function for which the Dirichlet conditions
hold into a Fourier series is unique.
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1.3 Calculation of Fourier coefficients

Theorem 4 (Fourier coefficients). Let f be a T-periodic function such that
the Dirichlet conditions hold. The Fourier coefficients of f are given by

_ 2 IO+T 2wk d

ap = CoS T T
$0+T 2rk

b, = / sm< 7;33) dx

If a function is periodic it remains periodic under any shift of the interval
[z0,x0 + T'[. It is helpful to choose the simplest (most symmetric) interval.

Theorem 5 (Symmetry properties of Fourier coefficients). 1. A functi-
on f(x) = f(—x) Yz is called symmetric w.r.t. the y axis. Then the
real Fourier series contains no sin / terms and all by coefficients va-
nish.

2. A function f(x) = —f(—x) Vx is called antisymmetric around the
origin. Then the real Fourier series contains no cos / terms and all ay,
coefficients vanish.

1.3.1 Examples

1. The simplest function is the constant function f(x) = 1 Vz. It is
periodic for any period T and symmetric on intervalls of the form
[—1/2,T/2]. Hence by = 0 Vk.

T/2
ag = / 1-1dzx = 2
T/2
/2 T/2
ar = / (27rk::c) dr = [1sin (27#%)] =0 VEk
T/2 mk T —T/2

Obviously, the Fourier representation S¢(z) = ap/2 +0 =1 is trivial.
This is because the constant function is an element of the Fourier basis
(for k=0).

-1 for ze[-1/2T,0]

1 for z€[0,1/2T]
Note that this function is odd. Therefore, all cosine integrals vanish.
Thus a;, = 0 Yk € N. Note that zo = —7'/2.

2. Consider the function f(x) =
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[\
S
~
V)

by, = = 7T/2f(x) sin( T )d:z:

T
2 [0 ok 2 [T/2 ok
= T/T/z(_l) sin< 2x> da?+T/0 sin< WTQ:) dx

T/2 Ik
- 2= / si < m a:) dx (special case because of symmetry)

T/2_ 2rkx 2rkx L
= 2@ sm< T )d( T ) (substitution)

- 0 for k even
- 2ﬁ[ Cos(y)]g :m“(l)k]:{ 4/(rk) for k odd

3. Other examples: Fourier series representations for periodic functions

n [—m, 7.

function | Fourier series

x 25 1 U™ Ginna

|| g—Qan s S cosna
22 +4Zn 1 n) cosnx

3 23 (-1 (% — 7;;) sin nx

1.3.2 Convergence of the Fourier series and Gibbs phenome-
non

If the Dirichlet conditions hold the Fourier series Sy(x) converges towards
the function f(x) in the following way:

(f(et) + fa=)) = 5 lm (f(z +€) + f(z — )

I\D\H

Sg(z) =

(1) If the function is n times continuous differentiable on the periodic
interval the Fourier series converges quickly towards the function. The
Fourier coefficients decay with 1/k"™.
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(2) If the function is discontinuous at a finite number of points within its
period the Fourier series converges towards the function at all points
except at the discontinuities. At an discontinuity xg, the Fourier series
converges to an intermediate point:

lim S (o) — %(f(xw) + f(z0—))

n—o0

In this case the Fourier coefficients decay only like 1/k.

Gibbs phenomenon: In a close environment around the discontinuity
the Fourier series overshoots even in the limit of an infinite number of terms
(Gibbs phenomenon). The overshooting is by roughly 9 percent of the func-
tion step at the dicontinuity. The relative size of the overshoot directly at
the discontinuity cannot be influenced significantly by adding more Fourier
coefficents to the Fourier series representation of the function.

1.3.3 Parseval’s theorem

Theorem 6. Let f be a function such that the Dirichlet conditions hold.
Then
1 [xot+T 9 1 2
[ @Pae = (D) 0 @ R
o =1

Example: Power dissipation in an Ohmic resistor

Consider a AC voltage V (t) = Vpsin(wt) applied to an Ohmic resistor. Ob-

viously, the only nonzero Fourier coefficient is by = Vj. The power dissipated

at an resistor is related to the voltage by P = V - I = V2/R. Over a pe-

riod, the power P = fT V2(t)dt/R is dissipated. Using Parseval’s theorem

we can calculate the dissipated power directly from the Fourier coefficients
— (1/2) 83 = (1/2) V2.

1.4 Alternative representations of the Fourier se-
ries
1.4.1 Amplitude and phase representation

In the (generic) Fourier series of a T-periodic function f(z) both sin and
cos functions appear pairwise with the same frequency. Those terms can be
combined:

27 . 27 27
aj CoS <Tkac> + by sin (Tk:):) = A cos (Tkx + g0k>
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The new coefficients (Ay) and (¢) are called the amplitude spectrum and
the phase spectrum of the function f(z). They are related to the Fourier
coefficients aj and by by

by, 0 ap >0
[ 2 | 32 - _ k
A =/ai + by and pr = — arctan <ak> +{ T ap <0

In an amplitude and phase picture the Fourier series reads

> 2
St(x) =ao + ;Ak cos (;kx + apk>

1.4.2 Complex representation

We use the Euler relation for defining the complex exponential function
' = cos(a) + i sin()

As the sin is antisymmetric while the cos is a symmetric function this implies
e = cos(a) — isin(a)

Adding / subtracting both equations gives representations of the trigono-

metric functions in terms of the complex exponential function:

cos(a) = % (e +e7™) and sin(a) = % (e" —e™')
Inserting this representation into the Fourier series S¢(x) allows to re-write
it as a complex series:

. 2 2
Si(x) = % + Zak cos <£kx> + by sin (;kx>

e.¢]
Q a ;27 : 2T b .27 - 27
7

a ar — by ;2 ar + b 2
2 + Te T Te !

[e.e]

;2T
— 2 : Ck eszm

k=—o00

k=1

The coefficients ¢ follow by comparison.
The Fourier coefficients of the complex Fourier series can be calculated
directly using

I 2n
ck = / fx) TR G Vk e Z
T Jo
Note that the complex Fourier coefficients are related by complex conjuga-

tion c_j = cj,. Hence, only half the number needs to be calculated!
Vice versa holds: a; = 2 Re(cg) and by, = —2 Im(cg).
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1.4.3 Parseval’s theorem

Theorem 7. Let f be a function such that the Dirichlet conditions hold.

Then
1 zo+T ) 0 9
o T S

0 k=—o00

1.5 Remark: (Continuous) Fourier transform

For nonperiodic functions g(z) a similar Fourier analysis is (sometimes) pos-
sible. Then, g(z) is represented by an integral over trigonometric or (complex
exponential) functions known as the (real or complex) Fourier transform:

1 OOA ikx
o) = = |t
R I

The continuous Fourier transform is an integral transform which has a for-
ward (g(x) — g(k)) and a backward (g(k) — g(z)) direction. The function
g(k) is called the (continuous) Fourier transform of ¢g(x) and is a continuous
generalization of the discrete complex Fourier coefficients cy.

The commonly used prefactor (here 1/v/27) differs between different
fields (physics, signal processing, etc.). The product of the prefactors of the
forward and backward transformation must be 1/(2). Here, it is symmetri-
cally attributed to both directions to ensure that Parseval’s theorem remains
unchanged.

Inserting the forward transform into the backward transform gives

1 > 1 o N —ikx' 3.1 ik
r) = — — e T da' e dk
0= 5= [ e |9

It is a deep mathematical proof to show the identity of both sides for suitable
functions. Unfortunately, it does not hold for the simplest functions like
g(z) = 1 because their integral over all space diverges. Hence, one important
constraint on Fourier transforms is that both the function and its Fourier
transform must be adequately integrable.

1.6 Real discrete Fourier series/transform (rDFT)

In numerical calculations, a function is known only on a finite number of
discrete points (z;, f(z;)). We assume that all points are equally spaced
h = €Ty — $171Vi.

A discrete Fourier series of order N of a T-periodic discrete function f
contains 2N parameters (the a; and by coefficients). In order to determine
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2N parameters 2N independent points are needed within the period, i.e.
within interval [0, T"]. Hence, the stepsize of the discrete sampling of a conti-
nuous function must be Az = T'/(2N). Periodicity implies that f(0) = f(T),
i.e. those points are not independent.

Note that there are modifications to the Fourier series due to sampling.
One still writes the Fourier series of a discete function

00~ 3 [con (225 4 i (222

k=0

However, the discrete Fourier coefficients change w.r.t. the ayg, by:

Ay = % ij; f(z) (mean value)

A = ijéf(xj)cos (22]?%) 1<k<N-1
i = 8 (22

By = 0 "

B, = ]bjﬁlf(%)sm(%fﬁ) 1<k<N-1

By =

These results follow from the orthogonality relations for discrete scalar pro-
ducts and make use of the geometric series. Details of the derivation can be
found in Amos Gilat, Vish Subramaniam, Numerical Methods for Engineers
and Scientists, Wiley, (Appendix C).

Comparing the real discrete Fourier series and the (infinite) Fou-
rier series of a continuous function

A continuous T-periodic function can be represented as a Fourier series with
an infinite number of Fourier coefficients.

> 27k 2k
Sf(x)zcg)+2akcos< 7;1%> —l—bksin( 7;36)

We can expect that Sy(z;) = SfD(xi) for all 0 < i < 2N. Equating both
expressions on the 2N points x; = i - T//(2N) shows that

o0 [e.9]
A = ax + Z (a2N-m—k + G2N-m-k), Ao =ao+ Z A2N -m;

m=1 m=1
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Be=be+ Y (~banam—t + bonm—t)

m=1
i.e. every coefficient of the discrete Fourier series contains an infinite sum-
mation of the coefficients of the infinite continuous Fourier series.

1.7 Aliasing and Shannon-Nyquist theorem

The addition of higher Fourier coef ficients due to finite frequency sampling
gives rise to the phenomenon of aliasing.

Example: Anticlockwise movement appears clockwise

Consider an additional hand of a clock which runs anticlockwise with a
rate of one revolution per minute (so its frequency is 1 per minute). Consider
two measurements which uniformly sample the movement:

(1) The first measurement is done with a frequency of 4 per minute:

Time [sec] 0 | 15|30 | 45 | 60
Position of extra hand on clock | 12 | 9 6 3 |12

(2) The second measurement is done with a frequency of 4/3 per minute:

Time [min:sec] 0 | 45| 1:30 | 2:15 | 3
Position of extra hand on clock | 12 | 3 6 9 12

The second measurement looks as if it runs clockwise with a frequen-
cy of 1/3 per minute. The observed frequency is the difference between
the actual frequency (1 per minute) and the measurement frequency
(4/3 per minute).

Theorem 8 (Nyquist-Shannon). A bandwith-limited analog signal with a
mazimum frequency frg [Hz] can be reconstructed without distortion from
uniform samples if the sampling has been done with a sampling frequency fs
at least twice as large as the maximum frequency

fs > 2fH = fNyquist
This lower threshold frequency is called the Nyquist frequency.

When the sampling frequency is lower than the Nyquist frequencz the
signal is called undersampled.
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Regression

The concept of a series representation of functions can be used in a more
general way to approximate functions by other functions and to fit functions
to a set of data points.

In regression problems, a function is represented by a finite linear com-
bination of basis functions b;(x). The linear coefficients a; can be calculated
from fitting the function optimally to a set of n data points (x;, ;).

fl@) =" ai bi(x)
=1

Evaluated for n data points this leads to a system of coupled linear equations
which can be represented by a matrix equation

AZ =b  with A€ R™™

The fitting of data points is an approximate procedure which is based on an
optimization strategy. In the simplest case the parameters are chosen such
that the squared error function

E = Z[yi — f(zisa1...an))?
=1

is minimized. Then the optimal parameters for the linear combination of
basis functions is found by solving the system of linear equations using the
Gaussian approximation

AT Az = AT

Example

12



