ASCHAFFENBURG UNIVERSITY OF APPLIED SCIENCES Faculty for Engineering Prof. Dr. Michael Möckel Numerical Methods and Simulation Module MT 03 Winter term 2015/16

Example questions for an exam

on ... January 2016

Personal details ¹ :													
Immatriculation number	:												
First and last name:													
Remarks:													
(1) The duration of the	exam	is 90	minı	ites.									
(2) Be aware that you r	may fi	nd a la	ater o	quest	ion e	asiei	thar	n an	earli	ier o	ne.		
(3) If not stated otherw if and only if all cor		_					_					awarc	led
(4) Please use a black of	or blue	e pen f	or yo	our a	nswe	rs. P	encil	will	not	be a	ccept	ed.	
(5) The use of any electric mitted. Please switch			e exc	ept a	non	-pro	gram	mab	le ca	lcula	ator is	not p	er-
(6) No materials other t	than o	ne she	et (t	wo p	ages)	of h	and-	writt	en n	otes.	are p	ermitt	ed.
(7) You are free to ans standable mix of bo		-		in E	Englis	sh, C	Germa	an o	any	cor cor	nmon	ly und	er-
Results:													
Question: 1		2		3	3		4		5		ТО	TAL	
Achievable:													
Achieved:													
	Ma	ark:											

 $^{^1}$ Your name is optional

Question 1: Basic Matlab

Q	Max	Achieved
1	14	

(a) In Matlab code a=rand(20,1) and A=rand(20,20) are a vector a and matrix A of random numbers. What are the dimensions of the results r for the following expressions?

Expression:	diag(a)	A(7:12, 9:20)	A * a
Dimensions:			

(b) Define a vector x in Matian code which represents an even integers for 2 to 2	(b)) Define a vector x	in Matlab code which	represents all even integers	for 2 to 20	000
--	-----	----------------------------	----------------------	------------------------------	-------------	-----

(c) Implement the following function as an anonymous function in Matlab code such that it can be called both for single numbers and vectors:

$$f(x) = (\tan(x) + 1)\ln(x^2 + 5)$$

(d) Define the above function as an inline function.

(e) Write a Matlab script that calculates the mean value of $N \in \mathbb{N}$ random numbers. Do not use loops.

(f) (6 points) Write a Matlab script which plots the curve of descending parachute from t = 0 until it reaches z=0. $x(t) = 2\cos(t)$, $y(t) = 2\sin(t)$, z(t) = 10 - t

Question 2: Root finding

Q	Max	Achieved
2	14	

Bisection is a						of	a	function.	Consider	the	function
$f(x) = e^{-x^2} -$	1/2. It has	s a root ar	our	nd x =	0.83.						

(a)	Under which requirements does the bisection algorithm work?
	Does this requirement hold for the current example (Y or N)?
(b)	Describe the update mechanism of the bisection algorithm.

(c) Run the algorithm for four iterations by hand and fill in the results in the following tables (precision 2 digits).

(1	0 /			
Iteration i	x_L	x_R	$f(x_L)$	$f(x_R)$
1	0.0	1.0		
2				
3				
4				

What is the final error?

error:			

Question 3: Ordinary differential eqns

Q	Max	Achieved
3	6	

Classify the following differential equations. Enter their order into the following table and tick the relevant box if an equation is linear, explicit or autonomous. If you want to correct a result use the last line of the table.

No	Ordinary differential equation	order	linear	explicit	autonomous
1	$\frac{dy}{dx} = ay$				
2	$\frac{d^2y}{dx^2} + (\frac{dy}{dx} - y)^2 = 0$				
3	$\frac{d^2y}{dx^2} + (\frac{dy}{dx} - x)^2 = 0$				
	for corrections				