Numerical solution of ODEs

Prof. Dr. Michael Möckel

Recap: ODEs as vector fields

• Example:

$$\frac{df(x)}{dx} = \sin(x)$$
$$y(0) = 0$$

• Analytical Solution:

$$f(x) = 1 - \cos(x)$$

Representation as vector field

$$\vec{v} = \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \Delta x \begin{pmatrix} 1 \\ \frac{\Delta y}{\Delta x} \end{pmatrix}$$

Vectors represent tagents to the unknown function f(x)

Recap: ODEs as vector fields

• Example:

$$\frac{df(x)}{dx} = \sin(x)$$
$$y(0) = 0$$

Analytical Solution:

$$f(x) = 1 - \cos(x)$$

Representation as vector field

$$\vec{v} = \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \Delta x \begin{pmatrix} 1 \\ \frac{\Delta y}{\Delta x} \end{pmatrix}$$

Vectors represent tagents to the unknown function f(x)

MATLAB – Code

```
% Vector field (normalized)
                                                       % Graphics
DGL = @(x,y) \sin(x)
                                                       hold on
delta = 0.2:
                                                       xL = xlim;
[X Y] = meshgrid(-2:delta:6.5, -2:delta:6.5);
                                                       yL = ylim;
                                                       line([0 0], yL, 'Color', 'black');
dY = DGL(X,Y);
dX = ones(size(dY));
                                                       line(xL, [0 0], 'Color', 'black');
L=sqrt(1+dY.^2);
quiver(X, Y, dX./L, dY./L);
                                                       % Plot initial value
                                                       scatter(0,0, 200, 1, 'filled');
% Exact Solution
sol = \frac{dsolve}{dsolve}(Dy = \sin(x), y(0) = 0', x');
pretty(sol); fplot(sol, [-2, 7.5])
```

Euler – Cauchy - Method

Construct the unknown function as a polygone

Next point:x(i+1) = x(i) + h

Incremental function Φ

$$y(i+1) = y(i)$$
$$+h\Phi(x(i), y(i), h)$$

• Evaluation of ODEL $\Phi = DGL(x(1), y(1))$

MATLAB - Code for Euler-Cauchy

```
function [ x, y ] = odeEULER_C(DGL,a,b,h,y0)
% x, y: Vectors with N+1 components,
% h: stepsize, [a,b] intervall, y0: Initial val
N = floor((b-a)/h);
x(1) = a;
y(1) = y0;
for i = 1:N
    x(i+1) = x(i) + h;
    y(i+1) = y(i) + DGL(x(i), y(i))*h;
end
end
```

Euler – Cauchy - Method

- Discussion:
- Error analysis:
 - inhomogeneous
 - estimated by2nd orderTaylor-expansion

$$\epsilon = \left. \frac{d^2 f(x)}{dx^2} \right|_{x=\xi} \frac{h^2}{2} >$$

• Problem statement:

Slope of each section is determined by single point (x(i), y(i)) only

Euler-Cauchy-method is "1-step-method"

Classification of Methods for Numerical Solutions of ODEs

Today discussed:	Other methods:
1-step method (SSM) Only one previously calculated point used in every step	Multistep methods (MSM) Several previously calculated points used in every step
Explicit Forward computation y(i+1) = F(x(i), y(i))	Implicit Iterative computation y(i+1) = F(x(i), y(i+1))
ODEs of 1st order	ODEs of higher orders
Example: (impr.) Euler, Runge-Kutta	Example: Adams-Bashford (Multi-Step)

Improved Euler Method

Improvement:

Take mean slope at 2 points:

$$[x(i), y(i)]$$
 (initial), $[x(i+1), ?]$

- Temporary determination

$$y(i+1) = y(i) + DGL(x(i), y(i)) * h$$
(Incremental function Euler-Cauchy)

- Improved Incremental function:

Mean value of slopes

$$\Phi = [DGL(x(i), y(i)) + DGL(x(i+1), y(i+1))] / 2$$

- Final determination of new point:

$$y(i+1) = y(i) + \Phi * h$$

MATLAB Code Improved Euler method

```
function [ x, y ] = odeEULER_verb(DGL,a,b,h,y0)
N = floor((b-a)/h); x(1) = a; y(1) = y0;
for i = 1:N
    x(i+1) = x(i) + h;
    m1 = DGL(x(i), y(i));
    y(i+1) = y(i) + m1*h;
    m2 = DGL(x(i+1), y(i+1));
    y(i+1) = y(i) + (m1+m2) / 2 *h;
end
end
```

Numerical solution of ODEs and Quadrature Rules for Numerical Integration

Exact determination of a point which is propagated by stepsize h

$$\mathbf{y}(t+h) = \mathbf{y}(t) + [\mathbf{y}(t+h) - \mathbf{y}(t)] = \mathbf{y}(t) + \int_{t}^{t+h} \mathbf{y}'(s) ds$$
$$= \mathbf{y}(t) + h \int_{0}^{1} \mathbf{y}'(t+\tau h) d\tau. \qquad \begin{aligned} s &= t + \tau h \\ 0 &\leq \tau \leq 1 \end{aligned}$$

Quadrature Rules	Num. Solution of ODEs
Riemann integration with (left-point) rectangles	Euler - Cauchy - method
Trapezoidal rule	improved Euler - methode
General quadrature rule	Runge-Kutta-methods (various steps and orders)

Runge – Kutta – Methods (1-step Methods!)

- Goal: Systematic improvement by multiple calling of ODE
- Single step method: Only one previously known point is used (x(i), y(i)))
- Construction of temporary intermediate points within a step h
- Set of interm. points S = Number of temporary interm. points (x(i,j), y(i,j))

$$x(i,j)=x(i)+a(j)h$$
 j: Index of intermediate points
$$y(i,j)=y(i)+\sum_{l=1}^{j-1}b(j,l)K(i,l)$$
 y-values of intermediate points
$$K(i,j)=DEG(x(i,j),y(i,j))$$
 K: evaluation of ODE at

intermediate points

• Improves incremental function for new function value at x(i+1) = x(i) +h $\sum_{i=1}^{S} a(i) K(i)$

$$y(i+1) = y(i) + \Phi(x(i), y(i), h) = y(i) + h \sum_{i=1}^{n} c(i) K(j)$$

Runge-Kutta-Method Parameters

Runge-Kutta Equations

$$x(i,j) = x(i) + a(j)h$$

 $y(i,j) = y(i) + \sum_{l=1}^{j-1} b(j,l)K(i,l)$
 $K(i,j) = DEG(x(i,j),y(i,j))$
 $y(i+1) = y(i) + \sum_{l=1}^{S} c(j,l)K(l)$

Parameter ranges:

$$0 \le a(j) \le 1$$
 Intermediate points within step-size
$$b_{j,l} = 0 \ \forall l \ge j$$
 Explicit method

Constraint for convergence:

$$\sum_{j=1}^{s} c_j = 1$$

 Arrangement of Parameters as Butcher-Tableau

Runge-Kutter Parameter for Improved Euler – Method

- Recap: Mean value of slope at initial point and final point
 - (1) Intermediate and final point have same x-coordinate x = x(i) + h
 - (2) Y-coordinate of intermediate point:

$$y(i+1) = y(i) + DGL(x(i), y(i)) * h$$

(Interm. point)

(3)
$$\Phi = [DGL(x(i), y(i)) + DGL(x(i+1), y(i+1))] / 2$$

(Mean value)

(4)
$$y(i+1) = y(i) + \Phi * h$$

(improved final pt)

- Read off Runge-Kutta parameters

(1) x-coordinates:
$$a(1) = 0$$
 (initial), $a(2) = 1$ (interm. point)

a

(2) Interm. point:
$$y(i,2) = y(i) + b(2,1) * K(i,1) * h$$

$$K(i,1) = DEG(x(i), y(i)), d.h. b(2,1) = 1$$

 $B^{(2,2)}$

(3) Incremental function:

$$y(i+1) = y(i) + \frac{1}{2} (K(I,1) + K(I,2)) h$$
, d.h. $c(1) = c(2) = \frac{1}{2}$

3rd Order Method by Heun

Interm. points a(j)		$B^{(3,3)}$		
0	0	0	0	
1/3	$\begin{vmatrix} 1/3 \\ 0 \end{vmatrix}$	0	0	
2/3	0	2/3	0	Teste:
	1/4	0	$\overline{3/4}$	$\sum_{j=1}^{s} c_j = 1$

4th Order Method Classical Runge-Kutter

a(j)	B ^(3,3)				
0	0	0	0	0	
1/2	1/2	0	0	0	
1/2	0	1/2	0	0	
1	0	0	1	0	
	1/6	2/6	2/6	1/6	

Numerically most Important Method Fehlberg 4(5) - Method

0	0	0	0	0	0	0	
$\frac{1}{4}$	$\frac{1}{4}$	0	0	0	0	0	Jointly used intermediate
$\frac{1}{4}$ $\frac{3}{8}$	$\frac{3}{32}$	$\frac{9}{32}$	0	0	0	0	results make method
$\frac{12}{13}$	$\frac{1932}{2197}$	$-rac{7200}{2197}$	$\frac{7296}{2197}$	0	1	0	efficient
1	$\frac{439}{216}$	-8	$\frac{3680}{513}$	$-\frac{845}{4104}$	0	0	
$\frac{1}{2}$	$-\frac{8}{27}$	2	$-rac{3544}{2565}$	$\frac{1859}{4104}$	$-\frac{11}{40}$	0	
	$\frac{25}{216}$	0	$\frac{1408}{2565}$	$\frac{2197}{4104}$	$-\frac{1}{5}$	0	4th Order
	$\frac{16}{135}$	0	$\frac{6656}{12825}$	$\frac{28561}{56430}$	$-\frac{9}{50}$	$\frac{2}{55}$	5th Order

Runge – Kutta – Methods Classification

- Set of interm. points S of a Runge-Kutta method
 - S = number of intermediate points = number of ODE evaluations
 - S determines numerical effort of method
- Order **O** of a Runge-Kutta method:
 - Represent the incremental function by Taylor series expansion around (x(i), y(i)) in powers of step-size h
 - Determines precision of method (error)
- Set S and Order O are rather independent!

Set	Order	Kind	Example	Remarks
1	1	Explicit	Euler	Only method for these parameters
2	2	Explicit	Improved Euler	Several methods with S = O = 2 exist
4	4	Explicit	Runge-Kutter 4th Order	