
Numerical solution of ODEs
Prof. Dr. Michael Möckel

• Example:

• Analytical Solution:

• Representation as vector field

• Vectors represent tagents to the unknown function f(x)

Recap:
ODEs as vector fields

-2 -1 0 1 2 3 4 5 6 7 8

x

-3

-2

-1

0

1

2

3

4

5

6

7

y

• Example:

• Analytical Solution:

• Representation as vector field

• Vectors represent tagents to the unknown function f(x)

Recap:
ODEs as vector fields

-2 -1 0 1 2 3 4 5 6 7

x

0

0.5

1

1.5

2

y

f(x) = 1 - cos (x)

% Vector field (normalized)
DGL = @(x,y) sin(x)
delta = 0.2;
[X Y] = meshgrid(-2:delta:6.5, -2:delta:6.5);
dY = DGL(X,Y);
dX = ones(size(dY));
L=sqrt(1+dY.^2);
quiver(X, Y, dX./L, dY./L);

% Exact Solution
sol = dsolve('Dy = sin(x), y(0) = 0','x');
pretty(sol); fplot(sol, [-2, 7.5])

MATLAB – Code

% Graphics
hold on
xL = xlim;
yL = ylim;
line([0 0], yL, 'Color', 'black');
line(xL, [0 0], 'Color', 'black');

% Plot initial value
scatter(0,0, 200, 1, 'filled');

• Construct the unknown function as a polygone

• Initial point
(x(1), y(1)) = (0, y0)

• Next point:
x(i+1) = x(i) + h

• Incremental function Φ

• Evaluation of ODEL
Φ = DGL(x(1), y(1))

Euler – Cauchy - Method

0 1 2 3 4 5 6 7

x

-0.5

0

0.5

1

1.5

2

2.5

3

y

function [x, y] = odeEULER_C(DGL,a,b,h,y0)
% x, y: Vectors with N+1 components,
% h: stepsize, [a,b] intervall, y0: Initial val

N = floor((b-a)/h);
x(1) = a;
y(1) = y0;
for i = 1:N

x(i+1) = x(i) + h;
y(i+1) = y(i) + DGL(x(i), y(i))*h;

end
end

MATLAB - Code for Euler-Cauchy

• Discussion: Euler-Cauchy-method is “1-step-method”
• Error analysis:

- inhomogeneous
- estimated by

2nd order
Taylor-expansion

• Problem statement:

Slope of each section is
determined by single
point (x(i), y(i)) only

Euler – Cauchy - Method

0 1 2 3 4 5 6 7

x

-0.5

0

0.5

1

1.5

2

2.5

3

y

Classification of Methods
for Numerical Solutions of ODEs

Today discussed: Other methods:
1-step method (SSM)
Only one previously calcula-
ted point used in every step

Multistep methods (MSM)
Several previously calculated
points used in every step

Explicit
Forward computation
y(i+1) = F(x(i), y(i))

Implicit
Iterative computation
y(i+1) = F(x(i), y(i+1))

ODEs of 1st order ODEs of higher orders
Example:
(impr.) Euler, Runge-Kutta

Example:
Adams-Bashford (Multi-Step)

Improvement:
Take mean slope at 2 points:
[x(i), y(i)] (initial) , [x(i+1), ?]
- Temporary determination

y(i+1) = y(i) + DGL(x(i), y(i)) * h
(Incremental function Euler-Cauchy)

- Improved Incremental function:
Mean value of slopes
Φ = [DGL(x(i), y(i)) +

DGL(x(i+1), y(i+1))] / 2
- Final determination of new point:

y(i+1) = y(i) + Φ * h

Improved Euler Method

0 1 2 3 4 5 6 7

x

-0.5

0

0.5

1

1.5

2

2.5

3

y

0.2 0.4 0.6 0.8 1 1.2 1.4

x

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

MATLAB Code
Improved Euler method

function [x, y] = odeEULER_verb(DGL,a,b,h,y0)

N = floor((b-a)/h); x(1) = a; y(1) = y0;

for i = 1:N
x(i+1) = x(i) + h;
m1 = DGL(x(i), y(i));
y(i+1) = y(i) + m1*h;

m2 = DGL(x(i+1), y(i+1));
y(i+1) = y(i) + (m1+m2) / 2 *h;

end
end

Numerical solution of ODEs and
Quadrature Rules for Numerical Integration

Exact determination of a point which is propagated by stepsize h
propagierten Punktes

Quadrature Rules Num. Solution of ODEs
Riemann integration with
(left-point) rectangles

Euler - Cauchy - method

Trapezoidal rule improved Euler - methode
General quadrature rule Runge-Kutta-methods

(various steps and orders)

• Goal: Systematic improvement by multiple calling of ODE
• Single step method: Only one previously known point is used (x(i), y(i)))
• Construction of temporary intermediate points within a step h
• Set of interm. points S = Number of temporary interm. points (x(i,j), y(i,j))

• Improves incremental function for new function value at x(i+1) = x(i) +h

Runge – Kutta – Methods
(1-step Methods!)

j: Index of intermediate points

y-values of intermediate points

K: evaluation of ODE at
intermediate points

• Runge-Kutta Equations

• Parameter ranges:

• Constraint for convergence:

• Arrangement of Parameters as
Butcher-Tableau

Runge-Kutta-Method
Parameters

Intermediate points
within step-size

Explicit method

• Recap: Mean value of slope at initial point and final point
(1) Intermediate and final point have same x-coordinate x = x(i) + h
(2) Y-coordinate of intermediate point:

y(i+1) = y(i) + DGL(x(i), y(i)) * h (Interm. point)
(3) Φ = [DGL(x(i), y(i)) + DGL(x(i+1), y(i+1))] / 2 (Mean value)
(4) y(i+1) = y(i) + Φ * h (improved final pt)

• Read off Runge-Kutta parameters
(1) x-coordinates: a(1) = 0 (initial), a(2) = 1 (interm. point)
(2) Interm. point: y(i,2) = y(i) + b(2,1) * K(i,1) * h

K(i,1) = DEG(x(i), y(i)), d.h. b(2,1) = 1
(3) Incremental function:

y(i+1) = y(i) + ½ (K(I,1) + K(I,2)) h , d.h. c(1) = c(2) = ½

Runge-Kutter Parameter for
Improved Euler – Method

a B(2,2)

3rd Order Method by Heun

Interm. points a(j) B(3,3)

Teste:

4th Order Method
Classical Runge-Kutter

a(j) B(3,3)

Numerically most Important Method
Fehlberg 4(5) - Method

4th Order

5th Order

Jointly used
intermediate
results make
method
efficient

• Set of interm. points S of a Runge-Kutta method
S = number of intermediate points = number of ODE evaluations
S determines numerical effort of method

• Order O of a Runge-Kutta method:
 Represent the incremental function by Taylor series expansion around

(x(i), y(i)) in powers of step-size h
 Determines precision of method (error)

• Set S and Order O are rather independent!

Runge – Kutta – Methods
Classification

Set Order Kind Example Remarks

1 1 Explicit Euler Only method for these parameters

2 2 Explicit Improved Euler Several methods with S = O = 2 exist

4 4 Explicit Runge-Kutter 4th Order

	Foliennummer 1
	Recap:�ODEs as vector fields
	Recap:�ODEs as vector fields
	MATLAB – Code
	Euler – Cauchy - Method
	MATLAB - Code for Euler-Cauchy
	Euler – Cauchy - Method
	Classification of Methods �for Numerical Solutions of ODEs
	Improved Euler Method
	MATLAB Code �Improved Euler method
	Numerical solution of ODEs and�Quadrature Rules for Numerical Integration
	Runge – Kutta – Methods �(1-step Methods!)
	Runge-Kutta-Method�Parameters
	Runge-Kutter Parameter for�Improved Euler – Method
	3rd Order Method by Heun
	4th Order Method�Classical Runge-Kutter
	Numerically most Important Method�Fehlberg 4(5) - Method
	Runge – Kutta – Methods �Classification

