
Numerical solution of ODEs
Prof. Dr. Michael Möckel



• Example:

• Analytical Solution:

• Representation as vector field

• Vectors represent tagents to the unknown function f(x)

Recap:
ODEs as vector fields
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• Example:

• Analytical Solution:

• Representation as vector field

• Vectors represent tagents to the unknown function f(x)

Recap:
ODEs as vector fields
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f(x) = 1  - cos (x )



% Vector field (normalized)
DGL = @(x,y) sin(x)
delta = 0.2;
[X Y] = meshgrid(-2:delta:6.5, -2:delta:6.5);
dY = DGL(X,Y);
dX = ones(size(dY));
L=sqrt(1+dY.^2);
quiver(X, Y, dX./L, dY./L);

% Exact Solution
sol = dsolve('Dy = sin(x), y(0) = 0','x'); 
pretty(sol);  fplot( sol, [-2, 7.5] )

MATLAB – Code

% Graphics
hold on
xL = xlim;
yL = ylim;
line([0 0], yL, 'Color', 'black'); 
line(xL, [0 0], 'Color', 'black'); 

% Plot initial value
scatter(0,0, 200, 1, 'filled');



• Construct the unknown function as a polygone

• Initial point
( x(1), y(1) ) = ( 0, y0 )

• Next point:
x(i+1) = x(i) + h

• Incremental function Φ

• Evaluation of ODEL
Φ = DGL( x(1), y(1) )

Euler – Cauchy - Method
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function [ x, y ] = odeEULER_C(DGL,a,b,h,y0)
% x, y: Vectors with N+1 components,       
% h: stepsize, [a,b] intervall, y0: Initial val

N = floor((b-a)/h);
x(1) = a;
y(1) = y0;
for i = 1:N

x(i+1) = x(i) + h;
y(i+1) = y(i) + DGL(x(i), y(i))*h;

end
end

MATLAB - Code for Euler-Cauchy



• Discussion: Euler-Cauchy-method is “1-step-method”
• Error analysis: 

- inhomogeneous
- estimated by 

2nd order 
Taylor-expansion

• Problem statement:

Slope of each section is 
determined by single 
point (x(i), y(i) ) only

Euler – Cauchy - Method
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Classification of Methods 
for Numerical Solutions of ODEs

Today discussed: Other methods:
1-step method (SSM)
Only one previously calcula-
ted point used in every step

Multistep methods (MSM)
Several previously calculated
points used in every step

Explicit
Forward computation
y(i+1) = F( x(i), y(i) )

Implicit
Iterative computation
y(i+1) = F( x(i), y(i+1) )

ODEs of 1st order ODEs of higher orders
Example:
(impr.) Euler, Runge-Kutta

Example:
Adams-Bashford (Multi-Step)



Improvement:
Take mean slope at 2 points: 
[x(i), y(i)]   (initial)  ,     [x(i+1), ?]
- Temporary determination

y(i+1) = y(i) + DGL( x(i), y(i) ) * h
(Incremental function Euler-Cauchy)

- Improved Incremental function:
Mean value of slopes
Φ = [ DGL( x(i), y(i) ) + 

DGL( x(i+1), y(i+1) )  ]  /  2
- Final determination of new point:

y(i+1) = y(i) + Φ * h

Improved Euler Method
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MATLAB Code 
Improved Euler method

function [ x, y ] = odeEULER_verb(DGL,a,b,h,y0)

N = floor((b-a)/h); x(1) = a; y(1) = y0;

for i = 1:N
x(i+1) = x(i) + h;
m1 = DGL(x(i), y(i));
y(i+1) = y(i) + m1*h;

m2 = DGL(x(i+1), y(i+1));
y(i+1) = y(i) + (m1+m2) / 2 *h;

end 
end



Numerical solution of ODEs and
Quadrature Rules for Numerical Integration

Exact determination of a point which is propagated by stepsize h 
propagierten Punktes

Quadrature Rules Num. Solution of ODEs
Riemann integration with
(left-point) rectangles

Euler - Cauchy - method

Trapezoidal rule improved Euler - methode
General quadrature rule Runge-Kutta-methods

(various steps and orders)



• Goal: Systematic improvement by multiple calling of ODE
• Single step method: Only one previously known point is used (x(i), y(i)) )
• Construction of temporary intermediate points within a step h  
• Set of interm. points S = Number of temporary interm. points (x(i,j), y(i,j))

• Improves incremental function for new function value at x(i+1) = x(i) +h

Runge – Kutta – Methods 
( 1-step Methods!)

j: Index of intermediate points

y-values of intermediate points

K: evaluation of ODE at 
intermediate points



• Runge-Kutta Equations

• Parameter ranges:

• Constraint for convergence:

• Arrangement of Parameters as 
Butcher-Tableau

Runge-Kutta-Method
Parameters

Intermediate points 
within step-size

Explicit method



• Recap: Mean value of slope at initial point and final point
(1) Intermediate and final point have same x-coordinate x = x(i) + h
(2) Y-coordinate of intermediate point: 

y(i+1) = y(i) + DGL( x(i), y(i) ) * h (Interm. point)
(3)   Φ = [ DGL( x(i), y(i) ) + DGL( x(i+1), y(i+1) )  ]  /  2     (Mean value)
(4)  y(i+1) = y(i) + Φ * h (improved final pt)

• Read off Runge-Kutta parameters
(1)   x-coordinates:   a(1) = 0 (initial),      a(2) = 1 (interm. point) 
(2)  Interm. point:    y(i,2) = y(i) + b(2,1) * K(i,1) * h 

K(i,1) = DEG( x(i), y(i) ),    d.h. b(2,1) = 1 
(3)  Incremental function:

y(i+1) = y(i) + ½ ( K(I,1) + K(I,2) ) h   , d.h. c(1) = c(2) = ½ 

Runge-Kutter Parameter for
Improved Euler – Method

a            B(2,2)



3rd Order Method by Heun

Interm. points    a(j) B(3,3)

Teste:



4th Order Method
Classical Runge-Kutter

a(j) B(3,3)



Numerically most Important Method
Fehlberg 4(5) - Method

4th Order

5th Order

Jointly used 
intermediate 
results make 
method 
efficient



• Set of interm. points S of a Runge-Kutta method
S   =   number of intermediate points =   number of ODE evaluations
S        determines numerical effort of method

• Order O of a Runge-Kutta method:
 Represent the incremental function by Taylor series expansion around

(x(i), y(i)) in powers of step-size h
 Determines precision of method (error)

• Set S and Order O are rather independent! 

Runge – Kutta – Methods 
Classification

Set Order Kind Example Remarks

1 1 Explicit Euler Only method for these parameters

2 2 Explicit Improved Euler Several methods with S = O = 2 exist

4 4 Explicit Runge-Kutter 4th Order
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