ASCHAFFENBURG UNIVERSITY OF APPLIED SCIENCES Numerical Methods and Simulation

Faculty for Engineering Module MT 03
Prof. Dr. Michael Mockel Winter term 2022/23
Email: Michael.Moeckel@th-ab.de https://moodle.th-ab.de/course/
Telephone: +49 (0)6021 / 4206 - 507 view.php?id=624

Problem Set 9

Numerical integration (Quadrature)

Coursework

Exercise 1: From interpolation to numerical integration

Numerical integration, also known as quadrature, is about integrating a function f which is given not
by an analytical expression but by a finite set of numbers (x;, f(x;) with 1 < i < n. Therefore, many
interpolation strategies can be extended to methods for numerical integration.

(0) General quadrature. In general, the integral of a function f which is only known at some sample
locations x; € D is given as the weighted sum

1£;Dl = Y wif(x)

xr, €D

w; are suitable weight factors. These weight factors can be specified by a quadrature rule which
assumes a certain interpolation of the data points for calculating the integral. If piecewise polyno-
mials of a given order are used for this interpolation the Newton - Cotes quadrature formulas can
be obtained:

(1) The simplest quadrature rules are those for standard Riemann integration, i.e. the decomposition
of the integral into a set of rectangles. This corresponds to a fitting of piecewise constant functions
(resulting in a non-continuous function) to the data points. A constant function is a polynomial of
order 0. Write down the weight factors w; if f(x;) represents the

(i) left hand point of a suitable rectangle
(ii) right hand point of a suitable rectangle
(iii) midpoint of a suitable rectangle

(2) A linear interpolation between two function values f(z;) and f(z;4+1) leads to the trapezoidal
rule. What are the corresponding weight factors w;?

(3) Implement the above quadrature rules in a MATLAB routine which receives two sets of points
z = [z;] and y = [f(z;)].

(4) Run the routine for the function f(x) = 2? with 10 values z; € [0,2].

(5) Compare with the built-in MATLAB routine trapz(x,y).

Exercise 2: Simpson’s rule

The most famous and most popular among the Newton-Cotes quadrature rules is known as Simpson’s
rule (despite the fact that it was earlier used by Kepler). It assumes piecewise fitting of quadratic
polynomials to sections of three neighbouring locations z;, x;41 and x;49. Then the weights of the
quadrature formula go[f] = wo f (x;) + w1 f(xi41) + wa f(2;42) are determined such that the exact integral
is reproduced for three simple polynomial functions:

1) fi(#) =1, such that [7"** fi(z)dz = 40 — z; = wo + w1 + w2
2) fg(x) =, such that f;i+2 fg(iﬁ)dl‘ = 1/2($Z-2+2 — .1712) ; wWoL; + W1Ti4+1 + WoTi42
3.) faz(x) = 22, such that f:‘“ f3(x)de = 1/3(x?, 5 — x?) X wox? + w1ai | + werd,

(1) If the quadrature rule is exact for these three polynomials it is also correct for any interpolating
polynomial of the form g(x) = agx? + a1x + ag. Why?

(2) Re-write the conditions in (3) for equidistant locations with h = 2,11 — x; and calculate the weight
factors w; for a single section of the integral.

(3) For evaluating an integral at many locations z; various sections need to be glued together. Then
points at the boundaries contribute to two sections. Rewrite the full quadrature formula for N
sections.

(4) Implement the Simpson rule in a MATLAB routine which receives two sets of points « = [z;] and

y = [f(z:)].

Exercise 3: Recycling in numerics - iterative trapezoidal rule

If a function is known analytically its integral can be calculated numerically by using different numbers
of locations x; and function calls f(z;). Increasing the resolution of the independent variable z; increases
the precision of the integral but also requires increased numerical effort. To keep the additional effort as
small as possible it is advisable to recycle previously calculated results and to improve a result until a
certain level of precision has been reached.

Consider a scheme where the number of equidistant locations z; € [a, b] is doubled in every iteration n.
For n = 0 the trapezoidal rule results in an integral Iy[f;a,b] = (a —b) 1/2(f(a) + f(b)). With every
iteration the basis length h = x;41 — x; is halved and more inner points are added to the integral.

(1) Consider on paper the first two iterations and write down the contributions to the integrals I; and
I>. How is I; contained in I5?

(2) Write down a general scheme for an arbitrary number of iterations. Consider (i) the number of
inner points ip, (ii) the current basis length h; and (iii) how the previous integral I;_; contributes
to the next iteration I;.

(3) Program a MATLAB function TrapIteration(f, a,b,n) which accepts as parameters an anony-
mous function f, an interval given by a and b and the number of iterations n. It should loop over
all iterations from i=1:n and print the current number of the iteration as well as the current value
of the integral.

(4) Run the MATLAB routine for the function f(z) = x? in the interval set by a = 0 and b = 1. What
is the expected result for the value of the integral? Start with n = 10, 15, 20 iterations and carefully
increase n to slightly larger values. What do you observe? Note: You can interrupt MATLAB with
the keys Ctrl 4+ C.

Exercise 4: MATLAB commands for quadrature

MATLAB provides a couple of routines for integrating a function f numerically over the interval [a, b]
including

e trapz(x,y)

e quad(f,a,b) which implements the Simpson rule. Note that this and all similar commands called
quad. .. will be removed from a future MATLAB release, so use instead

e integral(f, a, b) which uses an adaptive choice of intermediate points
Calculate the integrals for the following functions numerically

o sin(z)da

(1)

(2) ﬂ/2\/1+COSQ)dx
(3) fo e du
(4)
(5)

4) Plot the integral of the Gauss error function fo e~"*du in the interval [0, 5].

5) Calculate the integral of the function f(x) = 2% — 30x + 30 between its two smallest roots

