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Problem Set 8

Interpolation and Regression I

Coursework

Exercise 1: Regression with different functions

The least square method minimizes the quadratic difference between the approximately fitted function
f(x) and the data points (z;,y;).
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The function f(z) =3, a;g;(x) can be represented by a linear combination of basis functions g;(z). A
Vandermonde matrix A can be set up. If the number of basis functions is smaller than the number of
data points the Vandermonde matrix is not a square matrix and its rank is smaller than n.

Theorem: The minimization of the error is achieved by the coefficient vector @ iff a normal condition
holds for the Vandermonde matrix A, the coefficient vector @ and the vector of the data points 3 such
that

AT Aqd = ATy
This normal condition (dt Normalengleichung) can be used to solve well-conditioned regression problems

efficiently. Unfortunately, it deteriorates the conditioning of the problem from cond(A) to cond(A)>. For
badly conditioned problems other approaches e.g. based on orthogonal matrices are available.

Consider the following data points:

x [ 1/6 [ 2/6 [ 3/6 | 4/6 [ 5/6 | 1
v 1 [ 4]0 33

Fit the following functions by setting up the non-square generalized Vandermonde matrix A and solve
the normal condition:

(1) fi(z) = ao + a1z + aza?
(2) fa(z) = bg + by cos(2mx) + by sin(27x)
(3) f3(z) = co + c1 cos(2mx) + o sin(2wz) + c3 cos(4mx)

Exercise 2: Polynomial regression (difficult)

In the least squares approach to linear regression a linear function is fitted to a set of data points such
that the squared error function becomes minimal (see Problem Set 7, Exercise 3).

In an analogous way a higher order polynomial can be fitted to the set of data points. Generalize the
linear regression example to a polynomial of order n. This requires the optimization of n + 1 parameters
(the coefficients of the polynomial) and leads to a system of n + 1 coupled linear equations. Sums of
powers of data point coordinates (x;,;) are required for all even powers up to ), 2,

Write a MATLAB function which returns a vector a = [aq, ...a,| with all polynomial fitting parameters up
to a given order n by setting up the system of coupled linear equations and solving it using the \operator.



Exercise 3: Interpolation of data with splines

An alternative to interpolation of n data points (z1,%1) ... (Zn,yn) with a polynomial of high order is
based on using piecewise defined polynomials of lower order, so-called splines. A spline interpolation S(x)
can be written as a sum of functions which are nonzero only between two data points S(z) = ), s;(x)
with s;(x) = 0 Vo & [z, zi11]-

(1)

Linear splines. The simplest ’spline’ connects all data points with lines. Write a little MATLAB
function LinearSpline.m which calculates the parameters ag(i) and aq(i) for all lines g;(z) =
a1 (i)x + ao(i) connecting the data points (z;,y;) and (z;+1, yi+1) and plot the data as well as the
connecting lines on their respective intervals. Note that linear splines normally lead to discontinui-
ties of the derivative at the data points.

Quadratic splines. Quadratic splines use second order polynomials of the form h;(x) = as(i)x? +
a1 (i)z+ag(?). For n data points there are (n-1) splines needed which implies that 3(n-1) parameters
need to be fixed. This is done by the following constraints:

(1) i = hi(x;) (data point = function value at the first point of interval)

(i1) ¢it1 = hi(xi11) (at the last point of interval). The conditions (i) and (ii) give 2(n-1) cons-
traints.

(ili) At the interior data points, the derivatives of two splines are matched: hj(x;11) = hj,;(Tiq1).
This gives another n — 2 conditions and ensures continuity of the first derivative.

(iv) The final condition can be set by fixing a boundary condition for one of the outer data points
(e.g. (1) = 0).

Cubic splines. A plausible further demand is to expect continuity of both the first and the second
derivative at all (n-2) interior data points. This form of a spline is used in most cases. It consists of
cubic polynomials f;(z) = ag(i) + a1 (i)x + az(i)2* + a3(i)x® with 4(n-1) parameters. The following
conditions are used to determine the parameters:

(1) yi = fi(z:)

(i) yiy1 = fi(zitr)

(iii) At the interior data points, the first derivatives of two splines are matched: f/(z;41) =
Jit1(ziq1). This gives another n — 2 conditions and ensures continuity of the first deriva-
tive.

iv e interior data points, the second derivatives of two splines are matched: f/'(x;11) =

iv) At the interior dat ints, th d derivati ft li tched: f!'(x+

fi'1(z541). This gives another n—2 conditions and ensures continuity of the second derivative.

(v) At the edge, different boundary conditions can be chosen to determine the remaining parame-
ters. Natural or simple boundary conditions are often used and defined by f7'(zo) = f//(z,) =
0. Alternatively, clamped boundary conditions are sometimes used (fi(xo) = f),(zn) = 0).
MATLAB uses not-a-knot boundary conditions defined by matching the third derivative at
the two points zo and x,_1, i.e. f{"(z2) = f1"(z2) and [} 5(zpn—2) = f/"1(xn—2). This
translates into az(1) = a3(2) and az(n — 2) = az(n — 1).

Consider the points (zo,y0) = (0,0), (z1,y1) = (1,4), (x2,y2) = (2,3). Construct a cubic spline
interpolation by calculating the parameters a;,b;,¢;,d; (¢ = 1,2) for the two pieces f; and fo of
the piecewise defined function

_J h@) wo<z<a
S(x)_{f;(x) w?éxéx;

using natural boundary conditions. Set up a system of 8 coupled linear equations from the conditions
(i) - (v) and solve the system with MATLAB.

MATLAB provides a variety of ways to calculate splines. One way is to call the command spline.
Run x = 0:10; y = sin(x); xx = 0:.25:10; yy = spline(x,y,xx); plot(x,y,’0’,xxX,yy);
Plot the sin function with higher reolution and compare with the spline fit. Also plot the difference
of the spline fit and the function.



