
Aschaffenburg University of Applied Sciences Numerical Methods and Simulation
Faculty for Engineering Module MT 03
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Problem Set 8
Interpolation and Regression II

Coursework

Exercise 1: Regression with different functions

The least square method minimizes the quadratic difference between the approximately fitted function
f(x) and the data points (xi, yi).

E =

n∑
i=1

[yi − f(xi)]
2

The function f(x) =
∑

j ajgj(x) can be represented by a linear combination of basis functions gj(x). A
Vandermonde matrix A can be set up. If the number of basis functions is smaller than the number of
data points the Vandermonde matrix is not a square matrix and its rank is smaller than n.

Theorem: The minimization of the error is achieved by the coefficient vector a⃗ iff a normal condition
holds for the Vandermonde matrix A, the coefficient vector a⃗ and the vector of the data points y⃗ such
that

ATAa⃗ = AT y⃗

This normal condition (dt Normalengleichung) can be used to solve well-conditioned regression problems

efficiently. Unfortunately, it deteriorates the conditioning of the problem from cond(A) to cond(A)
2
. For

badly conditioned problems other approaches e.g. based on orthogonal matrices are available.

Consider the following data points:

x 1/6 2/6 3/6 4/6 5/6 1
y 1 4 0 -3 3 1

Fit the following functions by setting up the non-square generalized Vandermonde matrix A and solve
the normal condition:

(1) f1(x) = a0 + a1x+ a2x
2

(2) f2(x) = b0 + b1 cos(2πx) + b2 sin(2πx)

(3) f3(x) = c0 + c1 cos(2πx) + c2 sin(2πx) + c3 cos(4πx)

Exercise 2: Polynomial regression (difficult)

In the least squares approach to linear regression a linear function is fitted to a set of data points such
that the squared error function becomes minimal (see Problem Set 7, Exercise 3).

In an analogous way a higher order polynomial can be fitted to the set of data points. Generalize the
linear regression example to a polynomial of order n. This requires the optimization of n+ 1 parameters
(the coefficients of the polynomial) and leads to a system of n + 1 coupled linear equations. Sums of
powers of data point coordinates (xi, yi) are required for all even powers up to

∑
i x

2n.

Write a MATLAB function which returns a vector a = [a0, ...an] with all polynomial fitting parameters up
to a given order n by setting up the system of coupled linear equations and solving it using the \operator.



Exercise 3: Interpolation of data with splines

An alternative to interpolation of n data points (x1, y1) . . . (xn, yn) with a polynomial of high order is
based on using piecewise defined polynomials of lower order, so-called splines. A spline interpolation S(x)
can be written as a sum of functions which are nonzero only between two data points S(x) =

∑
i si(x)

with si(x) = 0 ∀x /∈ [xi, xi+1].

(1) Linear splines. The simplest ’spline’ connects all data points with lines. Write a little MATLAB
function LinearSpline.m which calculates the parameters a0(i) and a1(i) for all lines gi(x) =
a1(i)x+ a0(i) connecting the data points (xi, yi) and (xi+1, yi+1) and plot the data as well as the
connecting lines on their respective intervals. Note that linear splines normally lead to discontinui-
ties of the derivative at the data points.

(2) Quadratic splines. Quadratic splines use second order polynomials of the form hi(x) = a2(i)x
2+

a1(i)x+a0(i). For n data points there are (n-1) splines needed which implies that 3(n-1) parameters
need to be fixed. This is done by the following constraints:

(i) yi = hi(xi) (data point = function value at the first point of interval)

(ii) yi+1 = hi(xi+1) (at the last point of interval). The conditions (i) and (ii) give 2(n-1) cons-
traints.

(iii) At the interior data points, the derivatives of two splines are matched: h′
i(xi+1) = h′

i+1(xi+1).
This gives another n− 2 conditions and ensures continuity of the first derivative.

(iv) The final condition can be set by fixing a boundary condition for one of the outer data points
(e.g. h′′

1(x1) = 0).

(3) Cubic splines. A plausible further demand is to expect continuity of both the first and the second
derivative at all (n-2) interior data points. This form of a spline is used in most cases. It consists of
cubic polynomials fi(x) = a0(i)+ a1(i)x+ a2(i)x

2+ a3(i)x
3 with 4(n-1) parameters. The following

conditions are used to determine the parameters:

(i) yi = fi(xi)

(ii) yi+1 = fi(xi+1)

(iii) At the interior data points, the first derivatives of two splines are matched: f ′
i(xi+1) =

f ′
i+1(xi+1). This gives another n − 2 conditions and ensures continuity of the first deriva-
tive.

(iv) At the interior data points, the second derivatives of two splines are matched: f ′′
i (xi+1) =

f ′′
i+1(xi+1). This gives another n−2 conditions and ensures continuity of the second derivative.

(v) At the edge, different boundary conditions can be chosen to determine the remaining parame-
ters. Natural or simple boundary conditions are often used and defined by f ′′

1 (x0) = f ′′
n (xn) =

0. Alternatively, clamped boundary conditions are sometimes used (f ′
1(x0) = f ′

n(xn) = 0).
MATLAB uses not-a-knot boundary conditions defined by matching the third derivative at
the two points x2 and xn−1, i.e. f ′′′

1 (x2) = f ′′′
1 (x2) and f ′′′

n−2(xn−2) = f ′′′
n−1(xn−2). This

translates into a3(1) = a3(2) and a3(n− 2) = a3(n− 1).

(4) Consider the points (x0, y0) = (0, 0), (x1, y1) = (1, 4), (x2, y2) = (2, 3). Construct a cubic spline
interpolation by calculating the parameters ai, bi, ci, di (i = 1, 2) for the two pieces f1 and f2 of
the piecewise defined function

S(x) =
{

f1(x) x0 ≤ x ≤ x1

f2(x) x1 ≤ x ≤ x2

using natural boundary conditions. Set up a system of 8 coupled linear equations from the conditions
(i) - (v) and solve the system with MATLAB.

(5) MATLAB provides a variety of ways to calculate splines. One way is to call the command spline.
Run x = 0:10; y = sin(x); xx = 0:.25:10; yy = spline(x,y,xx); plot(x,y,’o’,xx,yy);

Plot the sin function with higher reolution and compare with the spline fit. Also plot the difference
of the spline fit and the function.


