
Aschaffenburg University of Applied Sciences Numerical Methods and Simulation
Faculty for Engineering Module MT 03
Prof. Dr. Michael Möckel Winter term 2022/23

Email: Michael.Moeckel@th-ab.de https://moodle.th-ab.de/course/

Telephone: +49 (0)6021 / 4206 - 507 view.php?id=624

Problem Set 6
LU decomposition of matrices

Homework

Exercise 1: Using LU decomposition for solving equations

Using the LU decomposition of a matrix A allows for solving the system of linear equations Ax = b. As it
does not modify the vector b it is very useful for solving systems which have the same coefficient matrices
but different vectors b. The method is based on the equivalence

PA = LU

Hence, we can re-write the linear system

Ax = b ⇒ PAx = Pb ⇒ LUx = Pb ⇒ L(Ux) = Pb

Then one can solve the problem simply by forward and backward substitution: First, solve Ly = Pb, then
Ux = y as in exercise 1.

Exercise 2: LU decomposition of matrices

The LU decomposition is a method to split a given rectangular matrix A into the two lower and upper
matrices L and U and a permutation matrix P . We only consider the case of square matrices here. It is
very similar to the Gaussian algorithm and will be helpful to solve systems of linear equations efficiently.

(1) How it works. A lower diagonal matrix represents matrix manipulations. To see this, define an
elementary lower diagonal matrix by the two commands L = diag(ones(4,1)). Then add another
nonzero element by L(3,2) = 8. Define a simple 4 × 4 matrix A = hadamard(4,4) and calculate
the (matrix) product L ∗A. What does an elementary lower diagonal matrix do? Look at the lines!

(2) So the lower triangular matrix provides a kind of bookkeeping of the matrix manipulations. Un-
derstand and run the following code to calculate the LU decomposition of the matrix M .

n = 4;

A = hadamard(4)

L = zeros(n,n);

for i = 1:n-1

L(i+1:n,i) = A(i+1:n,i)/A(i,i)

for j = i+1:n

A(j, i+1:n) = A(j, i+1:n) - L(j,i) * A(i, i+1:n)

end

end

(3) Note that the programme does not update all matrix elements. Why?

(4) Compare with the direct Matlab command for the lu decomposition lu(M). Note that Matlab is
memory efficient and saves the L matrix into the unused matrix elements of the upper triangular
matrix! A separated output can be obtained with [L U P] = lu(M). P is a special permutation
matrix which allows to apply the same permutations to the constant vector b (see exercise 4).

(5) Replace the inner loop of the programme in (2) by a Matlab-style vectorization. Hint: Note how j
appears in all variables of the inner loop and compare with the declaration of the loop.

Exercise 3: Solving an electric circuit with different voltages

Systems of coupled linear equations arise in many technical fields. One example is calculating currents
in an electrical circuit. Consider the following circuit of resistors (in Ohm) and voltage sources. The
Kirchhoff laws connect currents and voltages in a electrical circuit. For each plaquette of the circuit they
can be written as ∑

j

Rj(Ij,+ − Ij,−) =
∑
j

Vj

(1) Set up the Kirchhoff rules for the currents I1 ...
I4 assuming that all currents run clockwise in each
plaquette of the circuit.

(2) Solve the resulting system of coupled equations.
Which method would you use?

(3) Now switch off the upper left voltage source and re-
calculate the results

3

2

6

2

4

6
.

34

-
+

-
+

+
-

36V

48V

32V

I1

I3

I2

I4

Exercise 4: Some symbolic operations in MATLAB

Sometimes little calculations occur for which analytical results give an advantage over numerical numbers.
Matlab is not primarily designed for symbolic calculations but some of them do work. We only consider
the most practical ones.

(1) Pure symbolic. Symbolic calculations require the definition of symbolic variables using the keyword
syms followed by the names of the symbolic variables, e.g. syms x y. Then, a symbolic function
can be created by f = symfun(sin(x),x). Note that this is a symbolic function! Typing f(2) will
not produce sin(x = 2) = 0.9093 but the symbolic substitution sin(2) (test it). If you want to
evaluate a particular value, you have to do so explicitly eval(f(2)).

(2) Symbolic derivative. You can calculate the symbolic derivative from a (not too complicated) sym-
bolic function using diff. For instance, g = diff(f) should produce the symbolic cosine function.
It is symbolic, so you cannot evalute it directly: g(3) fails! Use instead eval(subs(g,x,0)) and
check the result. You can plot any symbolic function using ezplot.

(3) Symbolic Taylor expansion. There was a typo in the definition of the Taylor expansion command on
Problem Set 3. For the symbolic function f(x) the Taylor expansion around zero can be obtained
by taylor(f). More parameters can be used, e.g. an expansion around a point x0 (number) and
to order n, e.g. in taylor(f, x, 5, ’order’, 3). Note how the so-called order of the Matlab
command is defined and compare with the usual order of a polynomial.

(4) Mixed numeric and symbolic calculations. Assume we had defined an anonymous function before
by f = @(x) (5 - x.*exp(0.5.*x))./1.2. Calulate the symbolic derivative by (i) declaring x
an symbolic variable after the function definition using syms x and (ii) creating a new symbolic
function which contains the derivative by df = symfun(diff(f,x)). Simplify the expression using
simplify(df). Afterwards, you can translate it into the anonymous function dfa by dfa=@(x)

eval(df) and plot it in the usual way.

(5) Symbolic matrices. You can enter a symbolic matrix using symbolic representations of varia-
bles and numbers. Create the symbolic matrix S1 = [sin(sym(1)) sin(sym(2)) ; sin(sym(3))

sin(sym(4))] and the vector c = [1,2]. A symbolic solution is created by the usual command
x = S1 \ c. Print the result in a nicer way using pretty(x) and simplify the result symbolically
using simplify(x).

(6) Symbolic and numeric matrices. Enter the simple symbolical matrix Cs = [sym(1) sym(2) ;

sym(2) sym(4)] and create a numerical version by the cast Cn = double(Cs). Define two vectors
d1 =[4;8] and d2 = [1;1] and solve the systems Cx = di for i = 1, 2 both symbolically and
numerically. Check the determinant of the matrix C. Which output gives more information?

References:

[1] Amos Gilat, MATLAB, An Introduction with Applications, Wiley 2015

