Mathematik III

Prof. Dr. Michael Möckel WS 2022/23

What is an algorithm?

Mohammed ibn-Musa al-Khwarizimi (780-850) Baghdad, was the royal mathematician

Algorithm = procedure that solves a recurrent problem in a (finite) number of well-defined steps

Mathematically, an algorithm A is a function, mapping inputs onto outputs:

A : set of all possible inputs -> set of all possible outputs: output = A(specific input values)

Properties of the function A may be complicated (discontinuous, nonlinear, ...)

Simple example algorithm

Find maximum element from a set of (real) numbers

```
max = S(1)
for i=1:1:length(S)
  if S(i) > max
      max = S(i);
  end
end
```

Iterative algorithms

<u>Iterative algorithm:</u> An algorithm A is called <u>iterative</u>, if a core routine of the algorithm is repeated time and again

- to improve a temporary result
- until a certain criterion is reached
 (e.g. max. number of iterations or precision level)

An iterative algorithm is implemented by using a **loop** (for or while loop)

Iterative algorithms II

Starting point:

 X_0

 Iterative procedure: (discrete map)

$$\mathbf{x}_{n+1} = \mathbf{A}(\mathbf{x}_n)$$

Creates a chain of intermediate results:

$$X_1, X_2, ... X_n, X_{n+1}, ...$$

Contracting map and fixed points

Definition: Let $f: I \rightarrow R$, $x \rightarrow f(x)$ be a function and I = [l,u] a closed interval. A function f is called a **contracting map** if

$$\forall x, y \in [l, u]: \qquad |f(x) - f(y)| \le \alpha |x - y|$$

with $0 \le \alpha < 1$

Theorem: Let $f: I \rightarrow I$, $x \rightarrow f(x)$ be a contracting map and I a closed interval Then there exists exactly one fixed point x^* in I with

$$x^* = f(x^*)$$

(Fixed point condition)

Fixed point algorithm

 Not all iterative algorithms are fixed point algorithms (there are diverging algorithms)

 There may be more than one fixed point or more complicated 'attractors'

• Iterative algorithms need to be designed such that the fixed point contains the solution of a given problem

The fixed point method: Convergence

 Convergence of the fixed point method requires derivative |dA/dx| < 1 around the fixed point:

Fixed point method: Divergence

 Otherwise, the fixed point method diverges

Representation of algorithms by flow charts

Review: Taylor expansion

Taylor expansion

Taylor polynomial of finite order n:

- = approximate representation of a function f(x) as a polynomial
- Expansion around a given point x0
- f(x) is at least n times continuously differentiable
 (i.e. all derivatives must exist and must be continuous functions)

$$T[f, x_0, n](x) = \sum_{i=0}^{n} \frac{1}{i!} f^{(i)}(x_0)(x - x_0)^i;$$

Chapter 2

Root finding for nonlinear functions

Chapter 2.1

Root finding for nonlinear functions

Bisection method

The bisection method

Assume:

• f is continuous, nonlinear

f has a single root

- (1) Two initial values xl and xr are chosen on both sides of the root
- (2) The center point c is calculated.
- (3) Depending on the sign of f(c) either xl or xr Is updated
- (4) the algorithm converges to x*

The bisection method

Assume:

• f is continuous, nonlinear

f has a single root

- (1) Two initial values xl and xr are chosen on both sides of the root
- (2) The center point c is calculated.
- (3) Depending on the sign of f(c) either xl or xr Is updated
- (4) the algorithm converges to x*

Bisection method: Pseudocode

function BISECTION
$$(f(x), \ell, r)$$
for $k \leftarrow 1, 2, 3, ...$
 $c \leftarrow \ell + r/2$
if $|f(c)| < \varepsilon_f$ or $|r - \ell| < \varepsilon_x$ then
return $x^* \approx c$
else if $f(\ell) \cdot f(c) < 0$ then
 $r \leftarrow c$
else
 $\ell \leftarrow c$

Using a secant: Regula falsi

Assume:

- f is continuous, nonlinear
- f has a single root
- (1) Two initial values xl and xr are chosen on both sides of the root
- (2) The center point c is calculated.
- (3) Depending on the sign of f(c) either xl or xr Is updated
- (4) the algorithm converges to x*

Chapter 2.2

Root finding for nonlinear functions Regula falsi method

Using a secant: Regula falsi

- (1) Two initial valuesxl and xr are chosenon both sides of the root
- (2a) Define a line between the points (xl, f(xl)) and (xr, f(xr))

$$y(x) = f(x_L) + \frac{f(x_R) - f(x_L)}{x_R - x_L}(x - x_L)$$

- (2b) Calculate root of line xi by solving y(xi) = 0
- (3) Depending on the sign of f(xi) either xl or xr is updated
- (4) the algorithm converges to x* faster

Chapter 2.3.2

Root finding for nonlinear functions

Newton's method

Using a tangent: Newton's method

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Using a tangent: Newton's method

Fixed point algorithm:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Requires knowledge of derivative

Using a tangent: Newton's method

Fixed point algorithm:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Requires knowledge of derivative

Condition number:

$$\operatorname{cond}_{x^*} f = \frac{1}{|f'(x^*)|}.$$

Representation of algorithms by flow charts

Simple design of iterative algorithms

How to create a fixed point algorithm?

Create a one-point algorithm, i.e. a single series of points

'Extract' the linear variable x from the condition f(x) = 0

e.g.
$$3 x^2 - 0.5 x + 5 = 0$$

$$x = 2(3x^2+5)$$

Turn this into an iterative algorithm.

There are several ways to do so. See problem set 4.