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Organizational Matters

Problem Set 3
Root finding (dt. Nullstellensuche)

Coursework

Exercise 1: Simple but slow root finding: The bisection method

This method is a simple algorithm for finding a root (dt Nullstelle) x∗ of the function f(x) which works
for simple roots (whenever the function changes sign at the root). It requires two initial approximations
for the root, one smaller (xl < x∗) and one bigger (xr > x∗) than the root. This defines an interval [xl, xr]
around the root. Then an iterative algorithm starts: The midpoint xi = (xL + xR)/2 is calculated where
i is the number of the iteration. Then f(xi) is determined and evaluated: If the sign of f(xi) agrees with
the sign of f(xl) then xi is an improved value for xl, else xi is an improved value for xr. This defines a
new interval of half length. A simple estimation of the error is given by the length of the interval xr −xl.

(1) Create a function [x,e] = bisection1(f, l,r, n) where f is an anonymous function, l and r
are initial values for the left and right boundary of the interval, and n is the number of iterati-
ons. x represents an approximation of the root, e a rough estimate of its error. Save it in a file
bisection1.m.

(2) Implement the algorithm using a for 1:n ... end loop.

(3) Document the iterative calculation by creating a matrix with a single line res = [x, l, r,

f(l), f(e), e] for the initial values and adding a new line with the updated information to
the matrix res = [res; x, l, r, f(l), f(e), e]. After all iterations have been performed
print the matrix with the command printmat(res, ’Results’, ROWS, COLS) where ROWS =

num2str([0:n]) and COLS = ’x l r f(l) f(e) e’ are strings with reasonable row and column
labels. Also plot the error as a function of i.

(4) Define an anonymous function f(x) = x2 − 4 and test the function by calling it with simple
arguments. Then call the function bisection1 for this function and the initial values l =0, r=10
and n =5. What do you get? Switch to format long and repeat. Increase the number of iterations
to n = 50.

Exercise 2: Compare Matlab routines for root finding

Use the same function f(x) = x2 − 4 to study how Matlab routines find roots of nonlinear equations.
Compare with the output of the bisection algorithm.

(1) Write the function as a vector of its polynomial coefficients p = [a2, a1, a0] and apply the Matlab
root finding routine for polynomials roots(p). This routine uses a completely different numerical
approach.

(2) Matlab has another routine for calculating roots called fzero(f, x) where x is a guess for the root.
Use x = 4 and x=0 and compare. This routine uses improved versions of the bisection algorithm.

(3) Matlab provides another independent option for calculating roots based on the more general routine
fsolve(f, x). Try it for an initial guess x, e.g. x = 1.8. Note that fsolve is a powerful tool which
has beed designed to solve large systems of nonlinear equations. However, its standard precision is
limited. If you need to calculate a result with higher precision, special options are available.

(4) The routines fsolve and fzero use different algorithms to calculate roots. To see the difference,
define the simple function g(x) = x2 as an anonymous function. First try to find its root with
fzero(g,1) or a similar initial guess. Then try the corresponding fsolve(g,1).



Exercise 3: Newton’s method

Newton’s method for finding the root of a nonlinear function is based on a first order Taylor expansion.
This requires the knowledge of the first derivative. Then the assumption is that a first guess for the root
x0 is close enough to the actual root that higher order terms can be neglected.

f(x) ≈ f(x0) + f ′(x)(x− x0) (1)

We are looking for the unknown root, i.e. for f(x) = 0 and solve for x. This gives

x ≈ x0 −
f(x0

f ′(x0)
(2)

We can use this expression for an iterative algorithm. Starting from the initial guess we can calculate
(hopefully) better values xi for the root (i describes the step of the iteration).

(1) Create a function [x] = newton1(f, f1, x0, n) where f is an anonymous function, f1 is its
analytic derivative, x0 is an initial values and n is the number of iterations. The output x represents
an approximation of the root.

(2) Implement the algorithm using a for 1:n ... end loop.

(3) Document the iterative calculation by creating a matrix with a single line res = [x, f(x),

f1(x)] for the initial values and adding a new line with the updated information to the matrix res

= [res; x, f(x), f1(x)]. After all iterations have been performed print the matrix with the
command printmat(res, ’Results’, ROWS, COLS) where ROWS = num2str([0:n]) and COLS

= ’x f(x) f1(x)’ are strings with reasonable row and column labels. Also implement a plotting
command which plots the set of xi values over the iteration index.

(4) Define an anonymous function f(x) = x3−5 and its derivative f1(x) by hand and test the function
newton1.m. Compare with a direct Matlab result.

(5) Newton’s method can be very fast and efficient whenever the derivative at all intermediate points
xi is finite. An example where things can go wrong is given by the function f(x) = x1/3. Draw the
function and confirm that the root should be at x∗ = 0. Calculate the derivative analytically. Then
call the function newton1.m with x0 = 0.1 (pretty close to the root) and n = 10. What happens?

Homework

Exercise 4: The regula falsi (False position) method

A little modification of the bisection algorithm leads to an alternative method: Instead of taking the
midpoint of the interval the root of the linear function defined by the two points (l, f(l)) and (r, f(r))
can be used to update the boundary of the interval. This line is a secant of the function. Hence the regula
falsi method is counted among the secant methods for root finding.

(1) Set up the equation y = l(x) for the secant line on paper. Solve for the root, i.e. for x with l(x) = 0.

(2) Rename and save the function bisection1 as secant1.m. Replace the midpoint rule by the equi-
valent expression for the root of l(x).

(3) Call the function with the same parameters as in exercise 2.

(4) What do you observe when you follow the evolution of the boundaries of the interval? Note that
the error gives a wrong result. Delete the error calculation from the function. Calculate instead the
difference between two successive values of xi and xi+1. Hint: Introduce a new variable xold.


