
Aschaffenburg University of Applied Sciences Numerical Methods and Simulation
Faculty for Engineering Module MT 03
Prof. Dr. Michael Möckel Winter term 2022/23

Email: Michael.Moeckel@th-ab.de https://moodle.th-ab.de/course/

Telephone: +49 (0)6021 / 4206 - 507 view.php?id=624

Organizational Matters

(1) Moodle: Please register on moodle (https://moodle.th-ab.de/) with the course Mathematik III
für MT 3. Materials will be provided via the moodle platform.

(2) Getting in touch: For questions related to the course material there is a user forum on the moodle
site. Check out if someone else inquired your question there already. For other questions please get
in touch (Michael.Moeckel@th-ab.de).

(3) Books and online ressources: Recommendations are available on the Moodle course site.

(4) Prerequisites: This course aims at implementing mathematical structures in high level computer
code. This is wonderful as the computer will solve tedious math problems! However, familiarity with
some (higher) mathematics will be required. I strongly recommend to review the essential terms
of linear algebra (vectors, matrices, special matrices, matrix calculus, diagonalization of matrices,
etc.) and analysis (polynomials, trigonometric functions, curve sketching, differential equations,
etc.) whenever needed.

(5) Hands-on example classes: Example classes will take place in the computer room 40-140. Please
log into the machines before the lecture starts. All computer rooms are accessible for doing exercises
during daytime whenever there is no other course. I strongly recommend to install MATLAB on a
personal notebook or computer if available. The campus license for MATLAB also covers student
owned machines.

(6) Exercises: Problem sets will be handed out every week. They will partially be discussed in the
example classes. It is recommended to store your code in your file system. Create a new directory
for every problem set (e.g. Probs1, Probs2, etc) and start a new m-file for every problem.

(7) Exam: There will be one written exam at the end of term (90 minutes). No access to computers,
handbooks, lecture notes etc. will be allowed. The exam may contain a small programming task,
so you should memorize essential coding techniques. This is best done by doing the exercises
continuously. It is not considered sufficient to start preparing for the exam after the Christmas
break.

Problem Set 1
Getting familiar with MATLAB

Coursework

Exercise 1: MATLAB as a luxury calculator

1. Screen appearance. Start MATLAB and, firstly, identify the command window, the workspace
window and the current folder manager. Find the tab Default in the Layout menu. Whenever your
windows get messed up this will quickly return you to the default screen.

2. Interrupt. You can interrupt any calculation using Strg + C (except in parallel mode –which we
will not use–). When working on two screens there can be tricky issues. The command window has
to be on screen one to accept interrupts.

3. Logging. Start logging your session such that you can review the course later. Enter into the
command window

diary Lecture_1_LOG.m

Then all your input will be stored in this file. You can switch off the logging using diary off. Then
you can switch to a different file (e.g. a proper script) by ending the old and starting a new log
file, e.g. for creating your own set of helpful examples and remarks

diary Lecture_1_SCRIPT.m

4. Variables. Variables do not need to be declared. Just initialize them at first use.

5. Basics. Perform some simple calculations: Enter into the command window a=1 (enter) then b=2*a;
(enter) then b; (enter). What does the semicolon? What can you read off in the workspace window?
Click on the variable symbols!

6. Domain. Define a vector of equidistant points on the x axis by x = 0:0.1:3;. This creates a
vector. Check its entries in the workspace window. Double the distance between the points by
overwriting x with a new definition. Then reduce it by a factor of 5. Extend the upper limit to π
(pi).

7. Built-in trigonometric functions. Calculate sin(a), cos(pi), atan(1) and y = sin(x);. Check y. Note
that the last command operates pointwise on the vector x. Pointwise operation on vectors is an
important concept in MATLAB.

8. Call the command line help for the sin function using help sin (enter). Check out the help page
linked to the command line output. Try to structure the given information. Learn how to plot the
sin(x) curve from the given example.

Exercise 2: MATLAB as a matrix lab

1. Enter a matrix M =


11 12 13
21 22 23
31 32 33
41 42 43

 and a vector b =

7
8
9

 as a list using the following commands

(take care with commas and semicolons, commas could also be replaced by blancs.)

M = [11, 12, 13; 21, 22, 23; 31, 32, 33; 41, 42, 43]

b = [7; 8; 9]

• Write out individual matrix elements by stating their indices in round brackets, e.g. M(2,3),
and change it by M(2,3) = 0.

• Write out all matrix elements of a row using the unspecified index range : operator, e.g. r1 =
M(1,:) and define the three column vectors c1, c2, c3 in analogy to the example c2 = M(:,2).

• Reconstruct a new matrix N = [c1,c3,c2] from the columns of M. What should happen?

• Construct a square matrix K by cutting off the last row of M using K=M(1:3,:). Compare
with the definition of a domain (exercise 1) and explain the syntax of this command.

• In the command window, use the up key to recall the original definition of M. Change the
semicolons to commas. What changes? Carefully check the variable M on the workspace
window. What does the command size(M) tell you? Recall the first definition of M and
repeat.

2. The reshape(old object, new number of rows, new number of columns) command goes to
the heart of the MATLAB philosophy and is a powerful tool in MATLAB. It re-casts a set of num-
bers into different vector, matrix (or in general tensor) shapes. Define alternative representations
of the data present in M as M2 (2x6), M3 (3x4), v (12x1), z (1x12).

3. In linear algebra calculus is only defined for vectors and matrices with corresponding shapes. Make
sure that M is a 4 by 3 matrix. Then calculate the product of the matrix M and the vector b as S
= M * b. What is the shape of S?

4. Define the transpose of the matrix M as T=M’ (or T = transpose(M)). Check the size of T and M.
Calculate the matrix products TM = T * M; and MT = M * T; and compare.

5. Some high level operations are only defined for a subset of matrices, e.g. the determinant for
a square matrix S (implemented by det(S)) or the inverse for an invertible (nonsingular) ma-
trix (implemented by inv(A)). Try to compute both objects for the square matrix K defined by
K=M(1:3,:). Explain the problem.

Exercise 3: MATLAB’s collection of special matrices

MATLAB provides a large set of routines to initialize special matrices or vectors (socalled constructors).
The size of the matrix or vector is declared in round brackets. Try the following examples:

• The zero matrix (containing only zeros) zeros(2,3). What can it be used for?

• A matrix containing only ones ones(4,4). How could you make a matrix which contains 4 at every
matrix element?

• The unit matrix (i.e. the diagonal matrix with ones on the diagonal) of size 3 eye(3) or eye(3,3)
or identity(3)

• A diagonal matrix with the entries of the vector b on the diagonal (i.e. casting the vector as a
diagonal matrix) diag(b). The opposite also works: w = diag(M). What is contained in w?

• Random matrices, e.g. rand(5,6)

• Magic matrices, e.g. magic(3) Why is it magic? Calculate the sums for each row and column. More
complicated matrices (pascal, hadamard, hilbert, toeplitz, etc.) have been implemented, too.

Exercise 4: Notation and some ambiguities

Unfortunately, there are various conventions and some ambiguities in linear algebra.

• Vectors have been denoted by various symbols a⃗, ā,a, a. Their components can be addressed by a
single index and are often denoted by ai or a

i. Vectors can be represented as row or column vectors
which are related to each other by transposition1. In MATLAB, any name, e.g. v, vector1,

vectorlong etc. can represent a vector if it is initialized as a vector (cf Exercise 2). No type
control is enforced. Make a list corresponding notations for matrices yourself!

• Aside: Internally, MATLAB treats vectors as degenerate matrices with only one row or column.
Therefore, there is no strict distinction between matrices and vectors in most routines. This can
be seen by applying the command ndims(), which usually returns the number of dimensions (or
indices needed to label an object). For matrices Mij two indices i and j are always needed. For
vectors, ndims(v) returns 2 as well (not 1 as expected).

• Some operations between vectors or matrices can be performed either element-wise or with respect
to the full object, e.g. multiplication. Compare the results for d1 = b.*b, d2 = b*b, d3=(b’)*b,
d4=dot(b,b) and d5=b*(b’). Which operation(s) represent the scalar product b⃗ · b⃗? What do the
others?

• Absolute value. Some operations can be easily confused: When applied to vectors, the notation |⃗a|
takes the absolute values of individual elements, i.e. (|a1|, |a2|, ..., |an|). The MATLAB command
is abs. Yet the same MATLAB command applied to a complex number gives what is -correctly-
known as the absolute value of a complex number. This is NOT the absolute value of the real
part and the imaginary part but the distance of the number from the origin (radius). Compare the
vector result abs(b) with the abs(z) for the complex number z = 3 - 4i.

• Norm. On the other hand, the (2-)norm (i.e. the length) of a vector is ||⃗a||2 =
√∑

i a
2
i . Compute

norm(b) in MATLAB. What is the result of norm(z)?

Exercise 5: MATLAB as a tool with limits – roundoff errors

All numerical approaches have their inherent limits. It is important to be aware of this simple fact and
to develop some feeling for it to create and run reliable practical applications.

1. Delete all variables and start with a new workspace using clear all. If you want to delete a file
in the current folder you need to use the right button of your mouse.

2. Floating point representations limit the minimum and maximum range of available numbers and
their accuracy. Use realmin and realmax to find the range of valid numbers (absolute values,
the sign is an extra information). Change the output format to format long e and repeat. Now
all significant digits are displayed (the inverse operation is format short). What is the second
smallest and the second largest number in MATLAB? What is their distance from the smallest
and the largest number, respectively? Note that zero is a special case.

3. The relative error can be displayed with eps. What is the absolute error of the smallest number
and of the largest number? Note that both errors are not equal at all!

1Mathematically, a row vector is called the dual of a column vector.

4. Numerical wipeout of significant digits is a problem when very small and very large floating point
numbers are added. For all x ̸= 0 the following equality holds: (1+x)−1)/x = 1. Set x = 1.0e-15

and calculate the left hand side in MATLAB. What is the relative error?

5. The seriousness of the roundoff error depends on how a calculation is done. Mathematical equivalent
routes can lead to different computational errors! Check this for the identity

(x− 1)7 = x7 − 7x6 + 21x5 − 35x4 + 35x3 − 21x2 + 7x− 1

Generate a vector of points closely around x0 = 1 by x = 1-2.0e-8:1.0e-10:1+2.0e-8;. Consult
the help power reference for element-wise (pointwise) exponentiation of the elements of a vector x
and use this on the vector (x-1) to implement the left hand side as a new vector y = (x− 1)7. Note
that - implies an element-wise subtraction here! Implement the right hand side as z accordingly.
Plot y with plot(x,y) and study the scale of the axis carefully. Then insert a second graph into the
plot by the commands hold on and plot(x,z). Again, study the scale of the axis. What happend?

Additional Homework

Exercise 6: Practising MATLAB thinking

1. Create a matrix M with the following values: M =

 1.1 −5.0 4.7
−4.0 4.7 −22.3
−4.1 2.3 19.2


2. Create a row vector r with the values 1.6 -16.5 10.5

3. Create a column vector c with the values 0.7 -5.1 -4.8

4. Print the rank, size and array dimensions (ndims) of these objects

5. Save the objects to the MATLAB-file Ex6sub1.mat

6. print the element at row 2, column 3

7. Calculate r times M times c using matrix multiplication

8. Calculate c times M times r with suitable transposed objects and compare results

9. Calculate the determinant of M

10. Create a (7,7) Hilbert matrix and define B as the middle three rows (3-5) and last three columns
(5-7)

11. Set F to be the second column of B as a row vector

12. Set FM to be the diagonal matrix with the same entries as F

13. Set V to be a row vector of length 5 with all elements 0 using a standard constructor

14. Delete the matrix M from the workspace

15. Load the matrix M from the file.

16. Print the maximum value of each row and the minimum value of each column of M

17. Sum up all matrix elements in M without using loops

Exercise 7: Plotting sets of functions in MATLAB

There is a large selection of predefined plots in MATLAB. Write and run a script Firstplot.m with the
following features:

• Create a vector x with 1000 values in the interval [0,10].

• Consider the three parameter values m = 1,m = π/2,m = π and compute the function f(x) =
sin(m ∗ x) for all three values of m.

• Plot the function for all three values of m in the given interval into a single two-dimensional plot;

• Add labels on the x and y axis, a title and a legend labeling the three curves with the corresponding
values of m.

• Repeat the exercise and treat all values of m simultaneously by creating a vector [1, π/2, π]. Cal-
culate the function w.r.t. an argument of two vectors x and m. This can be done naively. What is
the result? Plot the curves. Note the simplicity of array operations in MATLAB!

